An international peer-reviewed journal which publishes in electronic format
Review
Use of Mannan- Oligosaccharides (MOS) As a Feed Additive in Poultry Nutrition.
J. World Poul. Res. 7(3): 94-103; pii: S2322455X1700012-7
ABSTRACT:
The European Union banned using all prophylactic antibiotics as growth promoters in poultry nutrition. As a result, the poultry nutritionist is now forced to look for growth promoting antibiotic alternatives, or at least considerably demote the amount of antibiotics used to sustain efficient broiler meat production and to be able to produce safe poultry egg and meat products. The Mannan-oligosaccharides (MOS), is a type of probiotics originated from the yeast cell wall (Saccharomyces cerevisiae) has gained more prominent attention, mainly due to its ability to bind the threadlike fimbriae on pathogenic bacteria preventing them from attaching to the gut wall, thereby averting their stabilization and the resulting colonization and multiplication, up to the disease level, so it had been showed to be a most capable solution for antibiotic-free diets, as well as furnishing effective support for digestion and immunity in poultry. Several investigations confirmed that using MOS as a feed supplement in poultry diets allowed birds to achieve a similar trend as when they were fed a diet enriched with antibiotic growth promoters. In addition, MOS has also shown to have a positive affection on bodyweight gain, feed conversion ratio, egg weight, egg production, fertility, and hatchability thus ameliorating well-being, energy levels and performance of avian species. Furthermore, it is also thought that it plays a role as an antioxidant, helping with mineral retention, improving bone mineralization and subsequently the overall improvement the performance of poultry birds. This review article has aimed to illuminate its sources, mode of action and beneficial applications of MOS in poultry diet for improving, production, immunity, safeguarding health among consumers and it ought to be used as a natural growth promoter on a commercial level in order to replace synthetic antibiotics in the poultry industry.
Key words: Antioxidant, Feed additive, Gastrointestinal health, Mannan-oligosaccharides (MOS), Performance, Poultry

Research Paper
Effect of Aging on Mitochondrial Gene Expression in Chicken Breast Muscle.
Tarai S, Thyagarajan D and Srinivasan G.
J. World Poul. Res. 7(3): 104-113; pii: S2322455X1700013-7
ABSTRACT:
Efficient conversion of food into body mass has been associated with altered gene expression of some proteins of the electron transport chain. We evaluated the effect of age on the mRNA expression of Cytochrome oxidase III(COX III), avian adenine nucleotide translocator (avANT), avian PPARγ coactivator-1α (avPGC-1α), Peroxisome proliferator-activated receptor-γ (PPARγ) and avian uncoupling protein (avUCP) in chicken. A total of 90 male birds each from Nandanam B2, Rhode Island Red, Aseel and White Leghorn, were divided into three replicates containing 30 birds each and used for the study. Production parameters consist of body weight, body weight gain, cumulative feed consumption and cumulative feed efficiency at fourth and eighth weeks of age were recorded. Total RNA was extracted from the breast muscle tissue of male birds and reverse transcribed into cDNA. Real-time PCR analysis was performed using specific primers for the genes. The greatest reduction was observed when comparing fourth and eighth week old birds in COX III, avANT mRNA expression levels were then followed by avPGC-1α and increased mRNA expression levels were observed in PPARγ followed by avUCP at eighth week of age. The study revealed phenotypic differences in production traits as well as the difference in expression of mitochondrial gene like COX III, avANT, avPGC-1α, PPARγ and avUCP expression level change with age in chickens.
Key words: Ageing, Mitochondria, PPARγ, COX III, avANT, avPGC-1α, avUCP

TABLE OF CONTENT
Research Paper
Growth Performance and Haemato-biochemical Parameters of Different Breeds of Rural Chickens.
Parveen A, Khan SH, Khawaja T, Iftikhar N and Khan S.
J. World Poul. Res. 7(3): 114-122; pii: S2322455X1700014-7
ABSTRACT:
A total of 2000 un-sexed day-old-chicks of each Desi, Fayoumi and Rhode Island Red (RIR) breeds were reared and maintained on deep litter system for a period of 20 weeks. In floor pens, each breed was reared separately in a single pen until 7 weeks of age when the 2000 birds had been randomly distributed between pens, with 21 to 24 birds of the same breed per pen (2.00 to 2.50 ft²/bird). The results had revealed that the average day old weight was the highest in RIR, intermediate in Desi and lowest in Fayoumi. The RIR breed had consumed more feed and therefore, gained the highest weight gain than as compared to those of Desi and Fayoumi breeds at all ages of growing phase. The feed conversion was best in RIR and lowest in Desi breed. Desi and Fayoumi chicks had a lower mortality than the RIR breed chicks. The meat composition was found to be insignificant amongst the three breeds. There was no significant difference in blood glucose, triglyceride, cholesterol, calcium, protein, uric acid and alkaline phosphatase values amongst the three breeds. There was also no significant difference in hematological values among all breeds. The total erythrocyte count, hemoglobin and packed cell volume increased with the advancement of age. However, erythrocyte sedimentation rate, mean corpuscular volume and mean corpuscular hemoglobin values decreased gradually with the advancement of age. It may be concluded that overall, RIR chickens had performed better than Fayoumi and Desi chickens. However, a lower mortality rate had been observed in Desi chickens.
Key words: Rural chicken, Body weight, Feed intake, Meat composition, Biochemical parameter

Research Paper
Performance, Serum Biochemical Parameters and Immunity in Broiler Chicks Fed Dietary Echinacea purpurea and Thymus vulgaris Extracts.
Habibi H and Firouzi S.
J. World Poul. Res. 7(3): 123-128; pii: S2322455X1700015-7
ABSTRACT:
The objective of this study was to evaluate the effect of administrating herbal extracts of Echinacea purpurea and Thymus vulgaris into broilers drinking water on performance, immune response and serum biochemical and Phyto hemagglutinin. 270 day-old Ross chicks were assigned to nine dietary treatments in a randomized manner. Each treatment was given to two replicates of 15 birds. The variables of T. vulgaris extract were 1% and 2% and variables of E. purpurea extract were 0%, 1% and 2% in drinking water. Body Weight (BW), Feed Intake (FI) and Feed Conversion Ratio (FCR) were recorded at the end of the experiment. Antibody responses against Newcastle disease viruses were measured after blood sampling at 42 days of age. The plant extracts did not affect BW, FI and FCR (P > 0.05). Antibody titers against NDV were significantly affected by the administration of E. purpurea (P < 0.05). The highest elevation was for the birds that were administrated with 2% E. purpurea from 1 to 42 days (P < 0.05). Administration of thyme extracts had improved serum biochemical parameters as compared with Echinacea and control group. It was concluded that under these research conditions, high levels of E. purpurea extracts had increased the broiler chickens’ immunity.
Key words: Broiler, Echinacea purpurea extract, Immunity, Performance, Thymus vulgaris extract.

Research Paper
Effect of Plumage Color and Body Weight on the Semen Quality of Naked Neck Chicken.
Abbass W, Jabbar A, Riaz A, Akram M and Allah Ditta Y.
J. World Poul. Res. 7(3): 129-133; pii: S2322455X1700016-7
ABSTRACT:
The low fertility of local chicken breeds is a major issue in backyard poultry system. The fertility rate varies among different males due to their difference in semen quality. The objective of the present study was to evaluate the effect of plumage color and body weight on the semen quality of Naked Neck chicken. The Naked Neck males (n=18) vary in three plumage colors (black=6, brown=6, white=6) and each color contains two body weight sub groups (heavy= >1600gm n=3 and light= 1600 gm) contained significantly more semen volume (0.21±0.02 ml) and sperm concentration.
(1.88±0.06×10^9 ml) than the lightweight group (light = < 1600 gm). So, black plumage color roosters can be used to enhance fertility rate of naked neck chickens.

Key words: Body weight, Naked neck chicken, Plumage color, Semen quality

Research Paper

Potential of Commercial Spice Mixes to Enhance the Quality and to Extend the Shelf Life of Raw Chicken Breasts.

Subbarayan S, Ruggoo A and Neetoo H.

J. World Poult. Res. 7(3): 134-144; pii: S2322455X1700017-7

ABSTRACT:

Raw chicken harbors spoilage microorganisms such as the Mesophilic Aerobic Bacteria (MAB), Lactic Acid Bacteria (LAB), Spoilage Yeasts (SY) and Pseudomonas, which limit product shelf life. This study compared the potential of three spice mixes ("Tandoori", "Kalai" and "Massala") to extend the shelf life of raw chicken. Chicken breasts were marinated with each of the spice mixes (3% w/w), and subsequently refrigerated for up to 15 days. Marinated and un-marinated samples were withdrawn at three-day intervals and analyzed for enumeration of MAB, LAB, SY and Pseudomonas. After three days, chicken marinated with "Tandoori" and "Kalai" spices had a significantly (P < 0.05) lower observed in the final MAB counts (7.51-7.88 log cfu/g) than untreated controls (7.88 log cfu/g). There were also no significant (P > 0.05) differences in the counts of Pseudomonas (2.65-3.64 log cfu/g), LAB (2.56-4.20 log cfu/g) and SY (2.60-4.15 log cfu/g) over the 15-day storage. Since the onset of microbiological shelf-life of marinated and un-marinated chicken breasts were estimated at 12 and 6 days respectively. However, based on the sensorial attributes, both marinated and un-marinated chicken received poor acceptability scores after six and three days respectively. Commercial spice mixes can thus extend the refrigerated shelf-life of raw chicken by three days to a maximum of six days.

Keywords: Breast, Chicken, Quality, Shelf-life, Spice

Research Paper

Efficacy of Combined Vaccine against Salmonellosis and Infectious Coryza in Poultry.

Ibrahim HM, Abd El-Aziz WR, El Sawy H, Sayed RH and Mohammed GM.

ABSTRACT:

In the present study, efficacy of two prepared combined vaccines against salmonellosis and infectious coryza in poultry has been studied. Two vaccines were prepared using *Salmonella* Typhimurium and Enteritidis combined with *Avibacterium paragallinarum* serovars A, B, and C. One vaccine was adjuvanated with aluminium hydroxide gel and the other adjuvanated with montanide ISA71. The two vaccines were assayed in six weeks old Specific Pathogen Free (SPF) white Lohman layer chickens by injecting two doses of each vaccine 3 weeks apart. These chickens were challenged with either *Salmonella* virulent strains or *Avibacterium paragallinarum* different serovars 3 weeks post second dose. Antibody titers in sera of chickens against different antigens were higher in groups vaccinated with montanide oil vaccine than those vaccinated with aluminium hydroxide gel vaccine as detected by different serological tests; ELISA, micro-agglutination test and haem-agglutination inhibition test. Protection rate against challenge test were 80% and 85% for *Salmonella* and (80%; 90%, and 70%) and (90%; 100%, and 90%) to *Avibacterium paragallinarum* serovars A, B, and C respectively for combined vaccine adjuvanated by aluminium hydroxide gel and montanide ISA71. The protection rate was 15% against *Salmonella* Typhimurium and Enteritidis and 0% against infectious coryza among the unvaccinated chicken group. It could be concluded that producing a vaccine from locally isolated *Salmonella* and *Avibacterium* (Haemophilus) paragallinarum strains adjuvanated with montanide ISA71 is recommended to aid in controlling avian salmonellosis and Infectious coryza at the same time.

Key words: Aluminum hydroxide gel, Chicken, Infectious coryza, Salmonellosis, Vaccine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Journal of World’s Poultry Research (ISSN: 2322-455X) is an international, peer reviewed open access journal aims to publish the high quality material from poultry scientists' studies to improve domesticated birds production, food quality and safety ...

www.jwpr.science-line.com

» JWPR indexed/covered by NLM Catalog (NLM ID: 101681042), DOAJ, HINARI, AGRIS, CIARDRING, NAAS (Score: 4.79), Ulrich’s™/ ProQuest, PUBDB, ICV 2015= 86,26, TOCs, TIB, BASE, WorldCat, ISC-RICeST, EZB, WZB, Google Scholar...full index information

» Open access full-text articles is available beginning with Volume 1, Issue 1.

» Full texts and XML articles are available in ISC-RICeST, DOAJ and AGRIS.

» This journal is in compliance with Budapest Open Access Initiative and International Committee of Medical Journal Editors’ Recommendations.

» We are member of WAME

» High visibility of articles over the internet.
Use of Mannan- Oligosaccharides (MOS) As a Feed Additive in Poultry Nutrition

Muhammad Saeed1*, Fawwad Ahmad2, Muhammad Asif Arain1,3*, Mohamed E. Abd El-Hack4, Mohamed Emam2, Zohaib Ahmed Butto3 and Arman Moshaveri6

1Department of Animal Nutrition, College of Animal Sciences and Technology, Northwest A&F University, Yangling 712100, China
2Department of Poultry Science, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
3Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, 3800, Uthal, Balochistan, Pakistan
4Department of Poultry, Faculty of Agriculture, Zagazig University, 44511, Zagazig, Egypt
5Department of Nutrition and Clinical Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
6Department of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
*Corresponding author’s Email: muhammad.saeed@nwafu.edu.cn

Received: 09 Jul 2017
Accepted: 14 Aug 2017

ABSTRACT

The European Union banned using all prophylactic antibiotics as growth promoters in poultry nutrition. As a result, the poultry nutritionist is now forced to look for growth promoting antibiotic alternatives, or at least considerably demote the amount of antibiotics used to sustain efficient broiler meat production and to be able to produce safe poultry egg and meat products. The Mannan-oligosaccharides (MOS), is a type of probiotics originated from the yeast cell wall (Saccharomyces cerevisiae) has gained more prominent attention, mainly due to its ability to bind the threadlike fimbriae on pathogenic bacteria preventing them from attaching to the gut wall, thereby averting their stabilization and the resulting colonization and multiplication, up to the disease level, so it had been showed to be a most capable solution for antibiotic-free diets, as well as furnishing effective support for digestion and immunity in poultry. Several investigations confirmed that using MOS as a feed supplement in poultry diets allowed birds to achieve a similar trend as when they were fed a diet enriched with antibiotic growth promoters. In addition, MOS has also shown to have a positive affection on bodyweight gain, feed conversion ratio, egg weight, egg production, fertility, and hatchability thus ameliorating well-being, energy levels and performance of avian species. Furthermore, it is also thought that it plays a role as an antioxidant, helping with mineral retention, improving bone mineralization and subsequently the overall improvement the performance of poultry birds. This review article has aimed to illuminate its sources, mode of action and beneficial applications of MOS in poultry diet for improving, production, immunity, safeguarding health among consumers and it ought to be used as a natural growth promoter on a commercial level in order to replace synthetic antibiotics in the poultry industry.

Key words: Antioxidant, Feed additive, Gastrointestinal health, Mannan-oligosaccharides (MOS), Performance, Poultry

INTRODUCTION

In the past decades, a variety of feed accretive had been employed in poultry diet. These feed accretive led to an improved rendition and effective utilization of feed in poultry birds (Chand et al., 2016a; Shah et al., 2016; Xing et al., 2017; Saeed et al., 2017a, b). Routinely being utilized in accretive of feed as: emulsifiers, antimicrobials, antioxidants, biological products, herbs, pH control agents binders and enzymes as well (Vahdatpour and Babazadeh, 2016; Siyal et al., 2017; Tareen et al., 2017; Saeed et al., 2017c, d, e).

Growth promoting is not the only use of feed additives but they have used also for stabilizing the
beneficial gut microflora by forestalling beneficial microorganisms (Hashemi and Dawoodi, 2011; Abudabos et al., 2017). In the last decades, antibiotics that are used as growth promoters in animal feed have been under severe attention, since they pose a potential threat to consumers by generating resistance in the host against the bacteria (Sultan et al., 2015). Conclusively, the European Union had banned the supplementation of growth promoting antibiotics in the animal diet since 2006 (Khan et al., 2016). Now, it is most important for the poultry researcher to find alternatives to antibiotic growth promoters to boost the health and production performance of poultry birds (Janardhana et al., 2009; Babazadeh et al., 2011; Vahdatpour et al., 2011). Feed additives of plant origin have gained a great interest in the poultry industry as they are safer, with wide dose range and so rare adverse effects (Alzawqari et al., 2016; Abudabos et al., 2016). Recently, many experiments had shown a number of significant effects on growth parameters, immune response, and gut health status in birds fed diets contain phytogens (Tanweer et al., 2014; Saeed et al., 2015; El-Hack et al., 2016, Saeed et al., 2017f, g, h). These studies have shown that the small intestine with the main role in the absorption of nutrients; it then proves that, both the proper structure and the proper function of the intestine is efficient in improving poultry performance and health (Sultan et al., 2014). It has been suggested that intestinal digestion and absorption of the nutrients is higher if the surface area of the villi is increased (Chand et al., 2016b). The beneficial microflora of young birds gut’s are counted to be somewhat irregular and can easily be disturbed by several external factors. The subclinical infection is one of these external factors which posed by the pathogenic challenge. So, the ability to preserve an optimal or normal level of beneficial microflora in the gut becomes one of the main factors in the determination of the ultimate health status and consequently the genetic growth expression of poultry. At commercial basis, available mannan-oligosaccharide has exhibited to enhance the bird growth parameters including feed intake and feed utilization (Hooge, 2004a; Rosen, 2007a, b; Nikpiran et al., 2013). The beneficial impacts of MOS on the development gut microflora were also revealed by Kocher et al. (2005) and Yang et al. (2008). The addition of MOS constantly elevates the caecal beneficial populations like Bifidobacterium and Lactobacillus spp. (Sadeghi et al., 2013). Decreasing the pathogenic bacteria and the increasing the beneficial bacteria could be belonged to the receptor sites competition and producing volatile fatty acids by bacteriocins along with IgA antibodies by the host immune system (Kim et al., 2009). Owing to these changes in the beneficial microflora, the goblet cells number and intestinal villi length increase as well, which ultimately promotes functions and health of the host GIT (Bonos et al., 2010). The diet supplemented with MOS has been reported to have a positive effect regarding body weight, feed efficiency, egg yield, fertility, egg mass and egg hatchability in various poultry species (Guclu, 2011; El-Samee et al., 2012). In another study by Iqbal et al. (2017) who had fed birds with MOS that had significant effects on body and egg mass, egg weight, and egg number and it has shown that feeding MOS as a substitute for antibiotics, as growth enhancer, can positively impact productive traits as well as health aspects in breeders of quail. This can also improve the manifest utilization of energy in feed and improve the birds feed efficiency that could partially belong to the modulatory impacts of mannan-oligosaccharide on the GIT microflorain broilers (Yang et al., 2008). The current review article discusses the potential aspects of using MOS: including its sources, mode of action and beneficial applications of MOS and its practical uses in the nutrition and production of poultry industry for improving, production, immunity and safeguarding health, among consumers and to prioritize this natural growth promoter as opposed to synthetic antibiotics to cove the medicinal cost in poultry.

Chemical traits and source of mannan-oligosaccharides

Mannan-oligosaccharides originated from the mannose blocks that exist in the yeast cell wall as it is mostly non-digestible carbohydrates (Saccharomyces cerevisiae). The cell wall consists of up to 25–30% of cell dry weight. The Saccharomyces cerevisiae is known yeast in the brewery and bakery industries. The MOS product which is a derivative of the yeast is used in animal nutrition. Saccharomyces cerevisiae cell wall involves both α-glucans and mannan-proteins. The essential building block for yeast cell wall are polymers of mannan with α (1-2) and α (1-6) bonds and to a less extent α (1-3) bounded side chains (Kogan and Kocher, 2007). The host enzymes or the intestinal bacteria enzymes cannot break these bonds apart and as a result carbohydrates (MOS) have no direct nutritive value, but it has benefits in keeping the gut health. It can be theorized from the several scientific research work that although mannan as a deivrate from yeast (Saccharomyces cerevisiae) is attributed to production and processing technologies, it might have different chemical formation and biological efficiency as reported by Spring (1999).
Mode of action

The beneficial microbiota development and the sustainment of eubiosis act an important role in the mechanisms of defense in the body and health of gut as well. There is elevating evidence confirming that the composition of microflora in the gastrointestinal tract in an adult healthy host remains statistically stable as theorized by Williams et al. (2001). Results of current studies suggesting that the supplementation of MOS to poultry diets can minimize the count of hind gut pathogenic bacteria during the high exposure to the pathogen (White et al., 2002; Castillo et al., 2008). The MOS supplementation was indeed accompanied with increasing beneficial flora, especially lactobacilli (Rekiel et al., 2007). Another experiment has also confirmed the beneficial impact of MOS, however, it has been also found to decline animal gut concentration of ammonia (Juskiewicz et al., 2003). Literature documented data indicated that dietary MOS fed diets can greatly lower the number of pathogens. In some studies on poultry, proves found that if the diets supplemented with MOS a considerable positive effect on gut histological structure in broilers chicken (Iji et al., 2001a). Similarly, it is reported that dietary supplementation of mannan products had the effect of increases the ratio of villous height/crypt depth in young broilers (Iji et al., 2001a; Yan et al., 2008) and in turkeys as well (Ferket, 2002) (Figure 1). Nochta et al. (2010) found that the addition of mannan as feed supplement remarkably enhanced the nutrients apparent digestibility.

Figure 1. How do Mannan-Oligosaccharides (MOS) affect intestinal structure (MOS could prevent the colonization and attachment of pathogenic bacteria and thus reduce the adverse effects of microflora and metabolites)

Beneficial effects of mannan-oligosaccharides in poultry

Broiler Farming

Effect on growth performance and blood biochemistry. Mannan-oligosaccharide that is one of the best alternatives to antibiotic growth advancers in the poultry industry diets and which are originated from yeast outer cell wall that known as Saccharomyces cerevisiae (Eseceli et al., 2012). The use of MOS in broiler diets had shown to positively impacts on performance criteria (Rosen, 2007a; Fritts and Waldroup, 2003). The range of dietary inclusion of the MOS averaged from 0.5 to 5 g/kg diet. The dose-response of MOS in different research work had showed the best dosage of MOS for optimal growth is around 2 g/kg diet as reported by Tucker et al. (2003). Iji et al. (2001b) studied the influences of different doses of MOS (0, 1, 3 and 5 g/kg diet) on the structure and function of the intestine of poultry birds within the starter
period (21-day). Results proved that poultry birds gave a high response by increasing the addition of MOS from 1 to 21 d compared to the 21-42 d period (Tucker et al., 2003). Nikpiron et al. (2014) reported that adding the MOS to the diets of poultry improved the growth performance values by enhancing the feed intake and stimulating the growth hormone and insulin release.

In a study had reported a significant decrease in the total cholesterol concentration in broiler chickens which had been supplemented with MOS @ 0.05% when compared to a control diet (Juskiewicz et al., 2003). Also, another experiment had shown that MOS could promote caecal Lactobacillus spp. and Bifidobacterium spp. growth and also elevated the height of villus and the number of goblet cells in poultry jejunum and ileum (Mohsen et al., 2014).

Effect on immune response. It is found that MOS had proved to be much more effective on antibody production against Avian Influenza Virus (AIV) in broiler chickens than Humate (HU). The immune function could be augmented with dietary Humate and MOS supplementation (Tohid et al., 2010). The innate immune system recognizes key molecular formations of the invading bacteria involving peptidoglycans, lipopolysaccharides, and possibly the structures of mannose in the cell walls of yeasts. Oligosaccharides which have mannose have been reported to impact on immune system through activating mannose-binding protein secretion from the liver. The aforementioned protein, as a result can enchain to bacteria and trigger the complement cascade of the immune system of the host as described by Newman (1994). MOS was indicated of having a beneficial effect on both immunoglobulin status and humoral immunity in general. Savage (1996) described an increase in IgG of the plasma and bile IgA in poultry grown up on diets supplemented with 0.11% MOS. The diet fed with MOS may constitute a novel and effective on antibody production against Avian Influenza Virus (AIV) in broilers than Humate (HU). The immune function could be augmented with dietary Humate and MOS supplementation (Tohid et al., 2010). The innate immune system recognizes key molecular formations of the invading bacteria involving peptidoglycans, lipopolysaccharides, and possibly the structures of mannose in the cell walls of yeasts. Oligosaccharides which have mannose have been reported to impact on immune system through activating mannose-binding protein secretion from the liver. The aforementioned protein, as a result can enchain to bacteria and trigger the complement cascade of the immune system of the host as described by Newman (1994). MOS was indicated of having a beneficial effect on both immunoglobulin status and humoral immunity in general. Savage (1996) described an increase in IgG of the plasma and bile IgA in poultry grown up on diets supplemented with 0.11% MOS. The diet fed with MOS may constitute a novel and effective plausible alternative that could reduce the spread of disease by decreasing the virus shedding and the contamination of the environment from AIV (H9N2) infection in poultry birds (Akhtar et al., 2016). Both Saccharomyces cerevisiae and its derived product is known as MOS that supplementation in poultry feed has a clear effect on the attenuation of Escherichia coli (E. coli) which induces intestinal cells disruption by reducing the intestinal inflammation and barrier dysfunction in broilers chicken. In addition to that, yeast (Saccharomyces cerevisiae) addition could also improved the intestinal microbiota and feed efficiency of in avian species (Wang et al., 2016) and MOS could improve the absorption of trace minerals (Sohail et al., 2011).

Layer farming

The feed supplementation with MOS has shown to entail positive effects by improving (P < 0.01) the liver antioxidant status and mitigating the significant increase in the cecal pathogenic bacterial load after molt in layer birds which shows the benefits of which can be improved with MOS supplementation (Bozkurt et al., 2016). The prebiotic (mannan-oligosaccharide) supplementation can positively alter the intestinal microenvironment (Hutsko et al., 2016). In another study by Jahanian and Asnagar (2015) found that MOS supplementation to laying hens feed under bacterial infection could improve their productive performance probably through modification in the gut’s bacterial populations and improving nutrient digestibility. As described by Bozkurt et al. (2012) who had shown that egg production had efficiently improved by MOS also showed that a stimulating humeral immune response in laying hens in different climate conditions.

Turkey farming

After the broiler production industry, the turkey industry considered as the second source of poultry meat across the globe. In turkeys, 76 numbers of comparisons showed the same responses to MOS as in broilers (Hooge, 2004b; Rosen, 2007b). Hooge (2004b) claimed that MOS addition to turkey rations revealed an average increase in body weight by 2% and reduction mortality by about25%.

So, organic enteric conditioners, such as dietary MOS, are of great importance for the turkey farming industry. Recently, antibiotic resistance had been raised in the Escherichia coli exist in the field which had been isolated from commercial turkey farms in North Carolina. In addition to that, a resistance to the Enrofloxacin had been shown (Bennick et al., 1999). There is no specific proof that that growth promoting doses of antibiotics control disease (Gustafson and Bowen, 1997), the debate over the Gram-negative bacteria that had been showing some resistance, as shown by Salmonella and E. coli, which caused the strongest objection to the use of antibiotic as growth promoters (Scioli et al., 1983). MOS improves the performance of turkey poult's, especially during the E. coli challenge like antibiotics which were traditionally used (Ferket et al., 2002). An improvement in growth performance was also observed in turkeys fed diets enriched with MOS (Savage and Zakrzewska, 1996) also authors found a statistical increase in body weight gain in large white male poult's which fed a diet supplemented with 0.11% MOS. Cetin et al. (2005) reported that MOS
enhanced immunoglobulin levels and caused more positive effects on growth performance, production and the turkeys’ ability to resist diseases. As a result of the previous finding, it can be concluded that MOS is an interesting alternative to antibiotic growth promoters to improve performance in turkey (Parks et al., 2001) and also it has a clear effect on improving body weight gain and lowering mortality in poults (Hooge 2004a).

An alternative to antibiotic

In contrast, regarding the action mode of the chemical growth promoters (antibiotics) fermentable carbohydrates sources, oligosaccharides especially MOS, act as one of the best alternatives to the Gram-negative pathogens attachment sites, so they prevent the attachment to the enterocytes and subsequently prevents the enteric infection. The adherence step of the pathogenic microbe to the intestinal cell wall is known to be the prerequisite step to the infection (Gibbons and Houte, 1975). This can be more clarified as in Vibrio cholera which is incapable of starting their disease signs without the attachment step to the enterocyte, even with large numbers of bacteria present (Freter, 1969). The adhesion step causes the bacterial entrapment and colonizing. The entrapment of nutrients for growth, the concentration of the digestive enzymes and the toxins onto intestinal cell wall, and the possible prevention of antibody attachment to the pathogenic cell (Costerton et al., 1978). The cell wall of the yeast organism is mostly carbohydrates and proteins in the form of mannose, glucose, and N-acetylglucosamine that are branched and chained together (Ballou, 1970). Mannan-oligosaccharides that are derived from mannans on yeast cell surfaces are acting effective binder to the bacterial binding sites (Ofek et al., 1977). Pathogens that are mannose-specific Type-1 fimbriae are confused and adsorbed to the MOS, leaving the enterocytes without colonization. In the study of Newman (1994), that had shown that the presence of dietary mannan-oligosaccharides in the intestine had successfully discarded some pathogenic bacteria that had the possibility of attachment to the lumen of the intestine. Mannose was shown by (Oyofo et al., 1989a) to inhibit the in vitro attachment of Salmonella Typhimurium to intestinal cells of the day old broilers chicken. A study by (Oyofo et al., 1989b) had shown that dietary mannose had a successful effect on inhibiting Salmonella Typhimurium in intestinal colonization in broilers. (Spring et al., 2000) had shown an effort in screening different bacterial strains to examine their ability to agglutinate mannan-oligosaccharides in yeast cell preparations (Saccharomyces cerevisiae, NCYC 1026). Which showed that the inclusion of MOS in the diet can improve the poultry birds’ performance, especially during challenging with E. coli, as well as being used as growth promoter antibiotics in poultry industry? A comparison of some attributes with dietary mannan-oligosaccharides and antibiotics is shown in table 1, (Ferket et al., 2002).

Table 1. Comparison of some attributes with dietary mannan-oligosaccharides and antibiotics.

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Mannan-oligosaccharides</th>
</tr>
</thead>
<tbody>
<tr>
<td>It reduces the non-specific immunological protection in the mucosa as a result of reducing both beneficial and non-beneficial bacteria (i.e. lactobacilli)</td>
<td>It can increases non-specific mucosal immunological protection by increasing relatively the goblet cell numbers and consequently the mucus secretion and it increases the colonization of beneficial bacteria in the gut.</td>
</tr>
<tr>
<td>It improves AME and reduces the energy needed for maintenance which consequently improves the net energy availability</td>
<td>It improves net energy available for production by improving dietary AME</td>
</tr>
<tr>
<td>It improves growth performance parameters under various environmental conditions</td>
<td>Improves growth performance parameters mainly when challenged with enteric pathogens</td>
</tr>
<tr>
<td>By suppressing enteric microflora it suppresses the competition for the nutrients.</td>
<td>It improves the brush border health so it enhances the absorption process.</td>
</tr>
<tr>
<td>prolonged or Improper usage can produce antibiotic resistant pathogens</td>
<td>It will not produce bacterial resistance</td>
</tr>
<tr>
<td>Reduces immunological stress via lowering enteric microbial load</td>
<td>It’s important role to stimulate gut-associated system immunity by acting as a non-pathogenic microbial antigen</td>
</tr>
<tr>
<td>Decreases adverse effects of microflora metabolites by decreasing the microflora</td>
<td>Decreases the adverse effects of microflora metabolites by changing microflora profile</td>
</tr>
<tr>
<td>It inhibits both the viability and proliferation of some pathogens and beneficial enteric microflora</td>
<td>It acts as a barrier against the attachment and consequent colonization of some enteric bacteria, but it is not bactericidal.</td>
</tr>
</tbody>
</table>
CONCLUSION

After reviewing the compiled literature it can be fully clarified that MOSs can be considered as a potential alternative to antibiotic growth promoters, and even at trace amounts @ 0.1%-0.4% practically usage as commercial feed additive in poultry nutrition would be quite effective in improving the health status and production performance of poultry. Among consumer concerns about danger increasing of antibiotic-resistant pathogens has urged the poultry nutritionist to consider “biologically safer” alternatives. After studying the published literature it is clear now that MOS is considered one of the best alternatives to antibiotic growth promoters. These mannan-oligosaccharides are non-digestible carbohydrates that may have greater benefits than antibiotics if it is used in a synergic way with other non-pharmaceutical enteric conditioners, such as fructo-oligosaccharides, probiotics, bioactive peptides, and some herbs and it would, in this manner, be a helpful additive to reduce feed cost in the poultry industry.

Acknowledgements

All the authors of the manuscript thank and acknowledge their respective Universities and Institutes.

Competing interests

Authors declared that they have no conflict of interest.

Author’s contributions

All the authors significantly contributed to compile and revise this manuscript. MS, MAA, reviewed the literature and initiated the review compilation. MEAEH, ZAB and ME, critically revise the manuscript. FA and MEAEH check the English language accuracy. Finally all authors read and approve the manuscript for publication.

REFERENCES

Figure 2. A flow diagram illustrating a large surface area is vital for optimal digestive function and nutrient absorption in poultry birds.

Iji PA, Saki AA and Tivey DR (2001b). Intestinal structure and function of broiler chickens on diets supplemented with a mannan oligosaccharide. Journal of Science Food and Agriculture, 81: 1186-1192. DOI: 10.1002/jsfa.925

Effect of Aging on Mitochondrial Gene Expression in Chicken Breast Muscle

Sarada Tarai¹, D. Thyagarajan² and G. Srinivasan³

¹Ph.D Scholar, Department of Poultry Science, IVRI, Bareilly, India
²Retd. Professor, Department of Poultry Science, Madras Veterinary College, Chennai-07, India
³Professor and Head, Department of Poultry Science, Madras Veterinary College, Chennai-07, India

*Corresponding author’s Email: sangeeta.das53@gmail.com

Received: 01 Aug 2017
Accepted: 04 Sept 2017

ABSTRACT

Efficient conversion of food into body mass has been associated with altered gene expression of some proteins of the electron transport chain. We evaluated the effect of age on the mRNA expression of Cytochrome oxidase III (COX III), avian adenine nucleotide translocator (avANT), avian PPAR-γ coactivator-1α (avPGC-1α), Peroxisome proliferator-activated receptor-γ (PPARγ) and avian uncoupling protein (avUCP) in chicken. A total of 90 male birds each from Nandanam B2, Rhode Island Red, Aseel and White Leghorn, were divided into three replicates containing 30 birds each and used for the study. Production parameters consist of body weight, body weight gain, cumulative feed consumption and cumulative feed efficiency at fourth and eighth weeks of age were recorded. Total RNA was extracted from the breast muscle tissue of male birds and reverse transcribed into cDNA. Real-time PCR analysis was performed using specific primers for the genes. The greatest reduction was observed when comparing fourth and eighth week old birds in COX III, avANT mRNA expression levels were then followed by avPGC-1α and increased mRNA expression levels were observed in PPARγ followed by avUCP at eighth week of age. The study revealed phenotypic differences in production traits as well as the difference in expression of mitochondrial gene like COX III, avANT, avPGC-1α, PPARγ and avUCP expression level change with age in chickens.

Key words: Ageing, Mitochondria, PPARγ, COX III, avANT, avPGC-1α, avUCP

INTRODUCTION

Genetic improvement has greatly enhanced the production performance of broiler in recent years, by drastically reducing the slaughter age. In the poultry industry, feed efficiency is a major criterion for defining the optimum performance to broiler chicken. It is considered as one of the most important traits in poultry farming activities since feed represents about 50 to 70% of the total cost of production. Moreover, because feed cost has increased dramatically in recent years, decreasing the amount of feed per unit of weight gain will improve efficiency of production and increase profits. Efficient conversion of food into body mass was reported to be associated with altered gene expression of some proteins of the electron transport chain (Gasparino et al., 2012). All cells need energy to perform their activities. Mitochondria are responsible for producing 90% of the energy needed for cells. Series of studies are conducted to understand relationships of mitochondrial function and biochemistry with the phenotypic expression of feed efficiency in broilers (Ojano-Dirain et al., 2004, 2005a, 2005b; Iqbal et al., 2004, 2005; Lassiter, 2006). These organelles are responsible for transforming chemical energy from metabolites into easily accessed energy to be used by the cell (Schauss et al., 2010).

Increased production of mitochondrial ROS, which occurs with advancing age, is related to greater oxidative damage in the macromolecules, as well as depletion in the energy production machinery. Birds with lower ATP
production due to lower mitochondrial efficiency in producing ATP from substrates show less efficiency or feed conversion. Therefore, mechanisms that favor a reduced ROS production may be useful in the prevention of age-related issues (Gasparino et al., 2012).

The aim of this study was to evaluate the effect of ageing on mitochondrial genes related to energy production, ATP synthesis and mitochondrial biogenesis of the genes Cytochrome oxidase III (COX III), avian adenine nucleotide translocator (avANT), avian PPAR-γ coactivator-1α (avPGC-1α), Peroxisome proliferator-activated receptor-γ (PPARγ) and avian uncoupling protein (avUCP) were analyzed at the fourth and eighth weeks of age in breast muscle of different chicken breeds that are known to have differential phenotypic expression.

MATERIALS AND METHODS

Ethical approval
The experimental protocol was approved by the Institutional Animal Ethics Committee, Tamil Nadu, India.

Experimental Birds
A total of 90 male birds each selected from Nandanam B2, Rhode Island Red, Aseel and White Leghorn divided into three replicates containing 30 birds each were used for the study. Nandanam B2 is a commercial hybrid dual purpose strain developed by Tamil Nadu Veterinary and Animal Sciences University, India. The concerned breed/strain was divided into four treatment groups with three replicates in each group, containing 30 birds each. The breeds were selected based on observed high and low feed efficiency over generations in Poultry Research Station, Madhavaram Milk Colony, Chennai-51, with the aim to evaluate mRNA expression of genes that are involved in mitochondrial energy metabolism and mitochondrial biogenesis that are known to have differential phenotypic expression.

All the experimental birds were wing banded and reared up to eight weeks of age following standard management practices in cages. All the chicks were immunized against Ranikhet disease by using F1 and Lasota strain at 7th day and 28th day respectively. Known quantity of feed was provided ad libitum with feed containing 3100Kcal ME/kg and 22 percent dietary crude protein. Clean potable water was provided ad libitum. The study was carried out during October-December months 2015 where the average daily high temperature in the study area (13.1623° N, 80.2433° E) was below 31°C. Data on phenotypic performance and gene expression studies were recorded.

Phenotypic assessment
The day old experimental chicks were weighed with 0.1 g accuracy. Body weight was again recorded at fourth and eighth weeks of age. Based on day old body weight, body weight gain was calculated. All the birds were provided with ad libitum quantity of experimental feed during the experimental period. At the end of every two weeks period, left over feed was weighed back and net feed consumption was estimated for each group. Feed efficiency was calculated at 4th and 8th weeks of age.

Genotypic assessment
Mitochondrial mRNA expression of COX III, avANT, avPGC-1α, PPARγ and avUCP genes were studied in breast muscle tissue at fourth and eighth weeks by following the protocol below. Two male birds from each replicate were randomly selected, birds were killed by cervical dislocation, and tissue from the breast muscle (pectoralis superficialis) was collected and submerged in RNA later and kept at -80°C.

The reagents were used for RNA extraction were TRIzol® LS Reagent (Invitrogen, USA) Catalog number: 15596026, Chloroform (Sigma, USA), Isopropanol (Sigma, USA), 70 per cent ethanol prepared from 99.9 per cent absolute ethanol (Jiamgsu Huasi International, China) and Nuclease free water (QIAGEN, USA)

The muscle tissues were initially triturated with, 1ml of Trizol™ reagent in a mortar and pestle. The mixture was then incubated for 5 min at room temperature and 200µl of chloroform was added and vortexed for 1 min. The vortexed mixture was then centrifuged at 12000 rpm for 15 min at 4°C to separate the aqueous phase. The aqueous phase was then transferred to a fresh tube and equal volume of isopropanol was added and mixed by slightly inverting the tube. The tube was then incubated at room temperature for 10 min. The mixture was then centrifuged at 12000 rpm for 10 min at 4°C and the supernatant was discarded. To the RNA pellet obtained, 1ml of 70% Ethanol was added and then stored at -80°C until further use. For immediate purposes, the tubes were centrifuged; the RNA pellet air dried and re-suspended in nuclease free water, quantified and equal volume of RNA was used across the different samples.

The quantity of RNA was measured by using eppendorf BioPhotometer Plus. The spectrophotometer was blanked with 1µl of nuclease free water and 1 µL of extracted RNA was used for quantification. The final concentration of the RNA (in stock) was determined by multiplying with the dilution factor. The quantity of RNA
was measured by taking ODs at 260 and 280 and then by the ratio of 260/280.

The cDNA was synthesized from the extracted total RNA using High capacity cDNA Reverse Transcriptase kit, United States (Thermo Scientific Revert Aid H Minus First Strand cDNA Synthesis Kit #K1632) according to the manufacturer’s instructions. The following biological reagents were added as presented in table 1.

Table 1. Composition of cDNA synthesis reaction

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA</td>
<td>8 µL</td>
</tr>
<tr>
<td>Primer (oligo dT)</td>
<td>1 µL</td>
</tr>
<tr>
<td>5X Reaction buffer</td>
<td>4 µL</td>
</tr>
<tr>
<td>dNTPs</td>
<td>2 µL</td>
</tr>
<tr>
<td>Reverse Transcriptase enzyme</td>
<td>1 µL</td>
</tr>
<tr>
<td>Ribolock RNAse inhibitor</td>
<td>1 µL</td>
</tr>
<tr>
<td>RNAse free water</td>
<td>3 µL</td>
</tr>
<tr>
<td>Total volume</td>
<td>20 µL</td>
</tr>
</tbody>
</table>

The RNA pellet was air dried and re-suspended in 10 µl DEPC water and denatured at 65°C for 5 min and snap cooled in ice for 1 – 2 min. The cDNA master mix (10 µl) was added to the denatured RNA on ice. The total reaction mixture was incubated at 25°C for 5 min followed by 42°C for 1 hour for the reverse transcription and finally at 70°C for 5 min to inactivate the enzyme. The cDNA synthesized was then used for the amplification of the house keeping gene β actin or stored at -20°C until further use. Quantitative PCR (qPCR) was carried out using SYBR® Green following the manufacturer’s instruction.

The real-time PCR mix was prepared as presented in table 2.

Table 2. Composition of Real-time PCR mix

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X SYBR Green Mix</td>
<td>10 µL</td>
</tr>
<tr>
<td>Forward Primer</td>
<td>0.5 µL (10 pmol/µL)</td>
</tr>
<tr>
<td>Reverse Primer</td>
<td>0.5 µL (10 pmol/µL)</td>
</tr>
<tr>
<td>Template cDNA</td>
<td>2 µL</td>
</tr>
<tr>
<td>Water</td>
<td>up to 20 µL</td>
</tr>
</tbody>
</table>

The components were mixed gently by vortexing and were briefly centrifuged to collect all the components at the bottom of the tube. PCR reaction was performed in duplicates for each sample. The cycling protocol was 40 cycles of de-naturation at 94°C for 2 min followed by 94°C for 10 seconds, annealing temperature at 58°C for 10 s with a melting program and finally held at 37°C.

The relative mRNA expression levels of the target genes such as COX III, avANT, avPGC-1α, PPARγ and avUCP gene were shown as Ct values in the muscle tissue. The β-actin Ct value for each sample was subtracted from the Ct value of the target gene to normalize for the host basal levels. Following normalization the mRNA expression levels of the target genes COX III, avANT, avPGC-1α, PPARγ and avUCP of each breed are expressed as fold change \((2^{-\Delta\Delta Ct})\) over the respective levels in Nandanam B2 and logarithmic transformation was applied to all the genes evaluated.

Statistical analysis

The results were expressed as mean ± Standard Error (SE). The differences between groups were assessed by using the Statistical Package for Social Sciences (SPSS version 17.0) software package for windows as per Snedecor and Cochran (1994). The difference within the means were estimated using Duncan’s multiple range test (Duncan, 1955) by considering the differences at significant level (P < 0.05).

RESULTS AND DISCUSSION

Body weight and body weight gain

In the present study, highly significant difference was observed in biweekly body weight at the fourth and the eighth week which was due to different types of chicken. Broiler type Nandanam B2 had attained the highest body weight at eighth week of age. Nandanam B2 was followed by Rhode Island Red, Aseel and lowest in White leghorn as shown in table 3.

This finding was in agreement with the earlier results obtained by Sangilimadan et al. (2014) who had studied the performance of Nandanam B2. Few other researchers compared the performance of different breeds like Aseel and Kadaknath in their locality like Huanshi et al. (2011) and got similar results. Khawaja et al. (2012) who compared the growth performance of Rhode Island Red had revealed comparable results.

Feed consumption and feed efficiency

Effect of different types of chicken in cumulative feed consumption and feed efficiency at different periods were significantly different and better feed efficiency was seen in Nandanam B2 followed by RIR, White leghorn and Aseel. This may be due to their difference in the genetic makeup of different types of chicken as shown in table 4.
The results of this study coincided with work carried out by Jha and Prasad (2013) that had studied the performance of Aseel under deep litter and reported FCR of 5.46 upto 20 week of age. Whereas the findings in the present study were contrary to the work carried out early by Sangilimadan et al. (2014) who studied the performance of Nandanam B2 and reported that feed efficiency at 8th week of age was 2.49. Halima et al. (2006) also compared the feed consumption of native chicken and Rhode Island Red but found no significant difference in feed intake.

The primers for the COX III, avANT, avPGC-1α, PPARγ and avUCP genes proved in this study to be adequate for real-time PCR analysis and expression of fold change in 4th and 8th weeks of age (Figure 1,2,3,4 and 5). The analysis of the dissociation curves did not reveal the presence of any unspecific products or the formation of primer dimers, demonstrating the reliability of the data in determining mRNA expression of the genes evaluated. Mean and standard deviation of the CT values obtained in the samples of muscle tissue for analysis of the expressions of genes are shown in table 5 and 6.

Table 3. Body weight and body weight gain of different chicken breeds during rearing periods

<table>
<thead>
<tr>
<th>Genetic groups</th>
<th>4th week</th>
<th>8th week</th>
<th>0-4 weeks</th>
<th>0-8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nandanam B2</td>
<td>315.84±5.40*** (84)</td>
<td>971.23±20.87 (72)</td>
<td>265.75±5.32 (84)</td>
<td>925.16±24.43 (72)</td>
</tr>
<tr>
<td>RIR</td>
<td>219.31±4.52 (79)</td>
<td>515.13±9.19 (72)</td>
<td>183.99±4.49 (79)</td>
<td>479.77±9.13 (72)</td>
</tr>
<tr>
<td>Aseel</td>
<td>208.89±4.16 (67)</td>
<td>502.81±9.55 (55)</td>
<td>177.32±4.12 (67)</td>
<td>471.54±9.50 (55)</td>
</tr>
<tr>
<td>WLH</td>
<td>181.68±2.71 (80)</td>
<td>442.95±6.33 (69)</td>
<td>150.88±2.71 (80)</td>
<td>412.19±6.33 (69)</td>
</tr>
<tr>
<td>F value</td>
<td>139.61**</td>
<td>355.13**</td>
<td>139.16**</td>
<td>263.74**</td>
</tr>
</tbody>
</table>

a,b,c – means within column bearing different superscripts differ significantly (P<0.05); ** Highly Significant (P<0.01), *** Mean Weight ± Standard Error

Table 4. Feed consumption and feed efficiency of different chicken breeds during rearing periods

<table>
<thead>
<tr>
<th>Genetic groups</th>
<th>Feed consumption (g)</th>
<th>Feed efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-4 weeks</td>
<td>0-8weeks</td>
</tr>
<tr>
<td>Nandanam B2</td>
<td>633.06±2.15***</td>
<td>1920.57±96.02</td>
</tr>
<tr>
<td>RIR</td>
<td>559.00±25.85</td>
<td>1863.72±43.95</td>
</tr>
<tr>
<td>Aseel</td>
<td>521.60±20.54</td>
<td>1682.20±47.63</td>
</tr>
<tr>
<td>WLH</td>
<td>534.85±37.18</td>
<td>1789.61±42.64</td>
</tr>
<tr>
<td>F value</td>
<td>13.875*</td>
<td>4.376NS</td>
</tr>
</tbody>
</table>

a,b,c – means within column bearing different superscripts differ significantly (P<0.05); *-Significant (P<0.05), **- Highly Significant(P<0.01), NS-Non-Significant (P>0.05); *** Cumulative mean ± Standard Error

COX III

Expression levels of mRNA as reflected by fold change positively link with metabolic regulating factor for energy production of AMP and ATP at mitochondria, subsequently for the body weight gain and feed efficiency traits. Percent fold change was lowest in white leghorn and highest in Aseel at 8th week compared to 4th week of age. White leghorn being a layer type had a negative trend in expression level. This may be due to greater ROS production and greater protein oxidation that are consistently found in birds with lower feed efficiency thereby decreasing the cellular efficiency.

This study coincides with the work done by Iqbal et al. (2004) who discussed that COX III mRNA levels in breast muscle were lower in poor feed efficiency compared with the birds that had better feed efficiency. Similarly, Ojano-Drain et al. (2007) suggested that a greater ROS production and greater protein oxidation are
consistently found in birds with lower feed efficiency, indicating that this factor may alter the expression of mitochondrial genes.

The findings concurred with Barazzoni et al. (2000) who verified a reduction in COX III mRNA expression related to altered oxidative capacity of mitochondria in older animals. This would indicate that maintaining transcription levels may be essential to mitochondrial oxidative capacity and the maintenance of efficient use of nutrients. Also similar to Bottje et al., (2002) who stated that increased oxidative stress and protein oxidation in the low-FE phenotype is likely due to increased mitochondrial reactive oxygen species.

The finding was in agreement with Kemp et al., (2003) who opined that COX III plays an important role in mitochondrial energy efficiency. Also similar to Scheffler (1999) who had reported that COX III may play a key role in energy production.

Zhang et al. (2010) reported that ROS production and expression of proteins of the respiratory chain complexes involved in metabolism, with the feed efficiency of animals. Bottje and Carstens (2009) reported that the low-FE phenotype generated more mitochondrial ROS than the high-FE phenotype. The low-FE broiler phenotype exhibited site-specific defects in electron transport, resulting in increased mitochondrial ROS production and increased protein oxidation in several tissues.

av (ANT)

Fold change was increased in Rhode Island Red and decreased in Aseel and WLH birds at eighth week of age. This protein is responsible for moving ADP from the cytosol to the mitochondria and for moving ATP through the inner mitochondrial membrane (Ojano-Dirain et al., 2007). Therefore, ANT has the function of increasing the quantity of ADP to be transformed into ATP by means of ATP synthase. The mitochondrial function may be impaired by the incapacity of ADP/ATP exchange between the cytosol and the membrane, thus there may be some connection between the ANT expression with the phenotypic expression of feed efficiency (Bottje et al., 2006). In the present study, we found that older birds displayed a lower ANT mRNA expression in muscle tissue, and poorer feed conversion, just as Ojano-Dirain et al. (2007) also reported that birds with a lower ANT expression had a poor feed efficiency due to the lower ATP production efficiency. Nicoletti et al. (2005) also found a reduced ANT expression correlated to aging. According to these authors, alterations in the expression of respiratory chain subunits may represent an adaptive cellular response to the accumulated damage to proteins and/or mitochondrial DNA that occurs due to the increased quantity of ROS in older birds.

av (PGC 1α)

Fold change was up-regulated in Aseel and down-regulated in White leghorn and Rhode Island Red at eighth week in comparison to fourth week of age. The finding was in agreement with Nisoli et al. (2003) who stated that PGC-1α stimulates nuclear respiratory factor-1 and mitochondrial transcription factor A expression, that in turn up-regulate expression of nuclear and mitochondrial genes that encode mitochondrial proteins. It agreed with the work done by Wu et al. (1999) who reported that PGC-1α is the most dominant regulatory protein in mitochondrial biogenesis. In general it is coinciding with the work done by Richards (2003) who discussed about the genes associated with controlling feed intake and energy balance. Also similar to Lassiter et al. (2006) who provided evidence of increased oxidation associated with low FE and further evidence of differential protein expression associated with the phenotypic expression.

PPARγ

Percent fold change was increased in Rhode Island Red, Aseel and WLH birds at eighth week in comparison to fourth week of age. This may be due to the advancement of age there is more fatty acid uptake and metabolism.

The result coincides with the Sato (2004) who studied chicken PPARγ mRNA expression in abdominal adipose tissue tended to increase with age, as shown by higher expression levels at 6 week than at 1 and 2 week of age. It also coincides with the work of Rosen et al. (1999) who stated that PPAR-γ is activated by fatty acids that control adipocyte differentiation as well as fatty acid uptake and metabolism. The result contradicts with Ojano-Dirain et al. (2007) who reported that there were no differences in breast muscle PPAR mRNA expression.

av(UCP)

Fold change was down-regulated in Aseel and up-regulated in Rhode Island Red and White leghorn at eighth week in comparison to fourth week of age. This result coincides with the work done by Raimboult et al. (2001) who reported that chickens divergently selected for low feed efficiency has higher avUCP mRNA expression than in birds from a high feed efficient line. Also coincides with Bottje et al. (2006) who also stated that avUCP mRNA expression in breast muscle from low feed efficient birds may be a mechanism to reduce the higher hydrogen peroxide production. The findings were in
agreement with Abe et al. (2006) who reported that increase in avUCP content could be associated with altered ROS production by mitochondria. Also similar to Ojano-Diran et al. (2007) who reported that greater UCP mRNA expression can impair feed conversion, as it can reduce ATP production.

This study contradicts with Gasparino (2012) who observed a gradual reduction in UCP mRNA as the quails aged. Also Ferrandiz et al. (1994) suggested that with increase in age, more failures in ATP production occur due to the impaired activity of the respiratory chain complexes.

Table 5. CT values obtained in the samples of muscle tissue of different chicken breeds for analysis of COX III, avANT, PGC1α, PPARγ and avUCP expressions at 4 weeks of age

<table>
<thead>
<tr>
<th>Genetic groups</th>
<th>Endogenous control β-actin.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COX III</td>
</tr>
<tr>
<td>Nandanam B2</td>
<td>16.37±1.15*</td>
</tr>
<tr>
<td>RIR</td>
<td>24.91±0.75</td>
</tr>
<tr>
<td>Aseel</td>
<td>27.73±2.80</td>
</tr>
<tr>
<td>WLH</td>
<td>20.91±1.95</td>
</tr>
</tbody>
</table>

* Mean ± Standard Error

Table 6. CT values obtained in the samples of muscle tissue of different chicken breeds for analysis of COX III, avANT, PGC1α, PPARγ and avUCP expressions at 8 weeks of age

<table>
<thead>
<tr>
<th>Genetic groups</th>
<th>Endogenous control β-actin.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COX III</td>
</tr>
<tr>
<td>Nandanam B2</td>
<td>29.93±2.61*</td>
</tr>
<tr>
<td>RIR</td>
<td>38.72±1.02</td>
</tr>
<tr>
<td>Aseel</td>
<td>32.52±2.62</td>
</tr>
<tr>
<td>WLH</td>
<td>38.69±0.38</td>
</tr>
</tbody>
</table>

* Mean ± Standard Error

Figure 1. mRNA expression of Cytochrome oxidase III (COX III) in the breast muscle of different chicken breeds at 4 and 8 weeks of age
Figure 2. mRNA expression of avian adenine nucleotide translocator (avANT) in the breast muscle of different chicken breeds at 4 and 8 weeks of age.

Figure 3. mRNA expression of avian PPAR-γ coactivator-1α (avPGC-1α) in the breast muscle of different chicken breeds at 4 and 8 weeks of age.

Figure 4. mRNA expression of Peroxisome proliferator-activated receptor-γ (PPARγ) in the breast muscle of different chicken breeds at 4 and 8 weeks of age.
CONCLUSION

In this study, aging influenced the expression of all genes analyzed; showing that the age of birds does influence the expression of electron transport chain genes, responsible for body energy production.

Consent to publish

All persons gave their informed consent prior to their inclusion in the study.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

This study is the part of M.V.Sc. Thesis of the first author Sarada Tarai, who carried out the research under the guidance of D.Thyagarajan who has helped in technical writing of the article and its final revision. G. Srinivasan has helped during the trial, processing of samples and analysis of data. All authors have read and approved the final version of the manuscript.

REFERENCES

ABSTRACT

A total of 2000 un-sexed day-old-chicks of each Desi, Fayoumi and Rhode Island Red (RIR) breeds were reared and maintained on deep litter system for a period of 20 weeks. In floor pens, each breed was reared separately in a single pen until 7 weeks of age when the 2000 birds had been randomly distributed between pens, with 21 to 24 birds of the same breed per pen (2.00 to 2.50 ft²/bird). The results had revealed that the average day old weight was the highest in RIR, intermediate in Desi and lowest in Fayoumi. The RIR breed had consumed more feed and therefore, gained the highest (P<0.05) weight gain than as compared to those of Desi and Fayoumi breeds at all ages of growing phase. The feed conversion was best (P<0.05) in RIR and lowest in Desi breed. Desi and Fayoumi chicks had a lower (P<0.05) mortality than the RIR breed chicks. The meat composition was found to be insignificant (P>0.05) amongst the three breeds. There was no significant (P>0.05) difference in blood glucose, triglyceride, cholesterol, calcium, protein, uric acid and alkaline phosphatase values amongst the three breeds. There was also no significant (P>0.05) difference in hematological values among all breeds. The total erythrocyte count, hemoglobin and packed cell volume increased with the advancement of age. However, erythrocyte sedimentation rate, mean corpuscular volume and mean corpuscular hemoglobin values decreased gradually with the advancement of age. It may be concluded that overall, RIR chickens had performed better than Fayoumi and Desi chickens. However, a lower mortality rate had been observed in Desi chickens.

Key words: Rural chicken, Body weight, Feed intake, Meat composition, Biochemical parameter

INTRODUCTION

Broiler chicken is an important protein source for human consumption, it also plays a major role in poverty alleviation, ensuring food security and generating family income at households within substandard management facilities (Islam et al., 2012). Over the past 50 years, poultry meat and egg production from individual birds in commercial flocks of broilers and layers has increased enormously, largely owing to genetic selection in the nucleus breeding flocks of poultry breeding companies and the rapid transfer of these gains to the commercial crossbred progeny. It should be also maintained that, the current breeding strategies for commercial poultry concentrate on specialized production lines, derived by intense selection from a few breeds and very large populations with a great genetic uniformity of the traits under selection (Padhi, 2016; Khawaja et al., 2016). This has resulted in genetic erosion for the unselected local breeds, which are normally less productive than synthetic hybrids (Besbes et al., 2008). The rural poultry population in most countries accounts for more than 60% of the total national poultry population (Özdemir et al., 2013). However, inadequate attention has been paid either to the evaluation of these resources or to the setting up of realistic and optimized breeding goals for their improvement. As a result, many such breeds with low productivity are at a high risk of extinction under rural production systems (FAO, 2011; Hoffmann, 2011).
In Pakistan, prior to the establishment of the commercial poultry sector, rural poultry was the only source of eggs and meat supply. Although, commercial poultry sector has expanded with a rapid speed during the last three decades and highly productive birds have been imported for boosting production, yet rural poultry has not lost its value. Its importance can be judged from the fact that according to Livestock Wing of Ministry of Food, Agriculture and Livestock almost every family in rural areas and every one out of five families in urban areas have been associated with poultry production activities in various ways in the country (Government of Pakistan, 2012-2013). Meat contribution of rural poultry during 2012-13 was 0.109 million tons as compared to 9.912 million tons from commercial poultry production (Economic Survey 2012 and 2013). Keeping in view the very low cost of producing rural poultry, the net return from rural poultry could be several times more than that of birds produced on commercial scale. The contribution of rural poultry to household economy could be further enhanced through the genetic improvement of rural birds, in addition to their feeding, management and health status.

The indigenous birds maintained by the rural peoples are locally known as “Desi” and have been reported to gain 374.72 g of body weight at eight weeks of age (Khawaja et al. 2012a). The Fayoumi breed has been introduced in Pakistan since 1980 and is well adapted to local environmental conditions. This breed is known to gain about 364.10 g of body weight at eight weeks of age (Khawaja et al. 2012a). Due to its calm character and strong immunity against common diseases, farmers keep this breed at their homes and at farms (Rajput et al., 2005). Among the breeds imported in Pakistan, Rhode Island Red (RIR) has gained more popularity than the others due to its heavy growth rate i.e. 483.30g at eight weeks of age (Khawaja et al., 2012a). Moreover, its long stay in Pakistan has made it well adapted to the local environmental condition. Basically it is a dual purpose breed of American class and is getting more popularity in rural areas as “Golden birds” (Ashraf et al., 2003).

Desi, Fayoumi and RIR poultry breeds are being reared by the rural people of Pakistan indiscriminately and very little information is available with respect to growth of these breeds. Likewise, the literature on hematological and serum biochemical values of Desi, Fayoumi and RIR indigenous birds during the growing phase is also limited. Therefore, this study was planned to compare the growth performance and blood parameters of Desi, Fayoumi and RIR breeds to examine the best potential breed under local environmental conditions of Pakistan.

MATERIALS AND METHODS

Ethical approval

Bird ethics committee, poultry research institute, Rawalpindi, Pakistan, approved the protocol and conducting of the study.

Birds, management and experimental feed

A total of 2000 un-sexed day-old chicks of each Desi, Fayoumi and RIR breed were obtained from hatchery of Poultry Research Institute, Rawalpindi, Pakistan. The birds were maintained in floor pens on deep litter system for a period of 20 weeks. In floor pens, each breed was reared separately in a single pen until seven weeks of age when 2000 birds were randomly distributed between pens, with 21 to 24 birds of the same breed per pen (2 to 2.50 ft²/bird). Birds were fed manually and fresh water was made available around the clock. Nutrient content of the feed (Table 1) followed by recommendations of the NRC (1994). All birds were provided with nine hours of light per day, which was increased to 14 hours at 18 weeks with an intensity of five lux throughout. Temperature and relative humidity were between 21 to 23°C and 70%, respectively. All birds were vaccinated following a program typical of the region. Care and management of the birds followed accepted guidelines (FASS, 2010).

Table 1. Ingredients and nutrients (%) composition of diets fed to experimental birds

<table>
<thead>
<tr>
<th>Dietary ingredients</th>
<th>Week 1 to 8</th>
<th>Week 9-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>35.60</td>
<td>42.00</td>
</tr>
<tr>
<td>Rice</td>
<td>23.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Rice polish</td>
<td>10.00</td>
<td>9.48</td>
</tr>
<tr>
<td>Soyabean meal</td>
<td>10.00</td>
<td>16.00</td>
</tr>
<tr>
<td>Canola meal</td>
<td>8.00</td>
<td>6.40</td>
</tr>
<tr>
<td>Corn gluten meal (60%)</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Fish meal</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>Lime stone</td>
<td>1.50</td>
<td>2.00</td>
</tr>
<tr>
<td>DCP</td>
<td>1.25</td>
<td>1.50</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.33</td>
<td>0.27</td>
</tr>
<tr>
<td>Premix*</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>DL- Methionine</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Calculated Nutrients (%)

ME Kcal/kg	2800	2800
CP	18.5	17
CF	3.80	4.30
EE	3.31	3.30
Ca	1.0	2.5
Available P	0.56	0.51
Lysine	1.10	0.69
Methionine	0.43	0.31

*Supplied per Kg of diet: vitamin A, 12000 IU; vitamin D3, 2200 IU; vitamin E, 10mg; vitamin K3 2mg; Vitamin B1, 1mg; vitamin B2, 5mg; vitamin B6, 1.5mg; vitamin B12, 0.01mg; Nicotinic acid, 30mg; Folic acid, 1mg; Pantothenic acid, 10mg; Biotin, 0.05mg; Choline chloride, 500mg; Copper, 10mg; Iron, 30mg; Manganese, 60mg; Zinc, 50mg; Iodine, 1mg; Selenium, 0.1mg and Cobalt, 0.1mg.
Parameter measured

The growth performance data (initial body weight, final body weight, feed intake, and feed conversion) were recorded at seven days (d) intervals. Mortality was also recorded in the rearing period. At the age of 12 and 20 weeks, meat samples of each breed from different birds were taken, dried, grounded and then subjected to proximate analysis such as percentage dry matter, crude protein, fat and total ash. Samples were analyzed using standard methods (AOAC, 2011).

Blood samples were collected from 20 birds of each breed at the age of 4, 12 and 20 weeks old and analyzed for the estimation of biochemical parameters such as glucose, triglyceride, cholesterol, calcium, protein, uric acid and Alkaline Phosphatase (ALP) and haematological parameters. For this purpose, 5 mls of blood was drawn from the brachial vein into dry clean centrifuge tubes and immediately centrifuged at 3000 rpm for 15 min. for separating serum. These samples were taken in the morning before feeding (between 8:00 to 10:00 hrs). Serum samples were stored at -20°C till time of chemical analysis. Samples were then analyzed at feed testing laboratory, Poultry Research Institute, Rawalpindi. The biochemical characteristics of blood were determined colorimetrically on UV visible spectrophotometer using commercial kits and diagnostic examinations. Total protein was quantitatively measured based on colorimetric determination as described by Cannon (1974). Glucose concentration was quantitatively measured based on enzymatic colorimetric method (Trinder, 1969). Total cholesterol concentration was quantitatively determined based on enzymatic colorimetric method of Allain et al. (1974). The uric acid was determined by the method of Bergman and Shabtay (1954) through the absorbency of the supernatant at 290 nm. The activity of ALP was determined by the method described by Bergmeyer and Wanlefeld (1980). Samples (10 μl) were incubated in alkaline buffer-substrate solution (50 mM glycine and 5.5 mM p-nitrophenylphosphate (pNPP), pH10.5) for 30 minutes at 37°C. The reaction was terminated by adding 0.02 M NaOH and ALP activity was determined as directly proportional to the amount of yellow pNPP anion liberated per unit time at 405 nm.

The anti-coagulated blood was also used to determine Red Blood Cell (RBC) count, Packed Cell Volume (PCV), Hemoglobin (Hb) concentration, and White Blood Cell (WBC) count. Differential WBC counts were made on monolayer blood films, fixed and stained with Giemsa-Wright’s stain. Total RBC and total WBC count were determined manually by method using hemacytometer (Campbell, 1995). Packed cell volume was measured by a standard manual technique using microhematocrit capillary tubes centrifuged at 2500 rpm for 5 min. Hemoglobin concentration was measured by cyanmethemoglobin method. Erythrocyte indices i.e. Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH) and Mean Corpuscular Hemoglobin Concentrations (MCHC) were calculated from total RBC, PCV and Hb (Ritchie et al., 1994), respectively.

Statistical analysis

All data were determined by using the SPSS version 16, statistical analysis program. P-value of <0.05 was considered for significant differences among groups and the comparison of means was made by using Duncan’s Multiple Range Test (Steel and Torrie, 1984).

RESULTS

Performance of rural chickens

The growth performance, mortality and meat composition of Desi, Fayoumi and RIR breeds during growing phase is shown in Table 2. The average day old weight was the highest in RIR (32.79g), intermediate in Desi (30.57g) and lowest in Fayoumi (27.09g). RIR breed consumed more feed and had gained the maximum (P<0.05) weight as compared with those of Desi and Fayoumi breeds at all ages of growing phase, which could be explained for the variation in genotype. Similarly, there was also significant variation (P<0.05) in feed intake among the Desi, Fayoumi and RIR chickens during growing phase. Desi breed consumed more feed, followed by RIR and Fayoumi chickens. The feed conversion was significantly poor (P<0.05) in Desi while it was better (P<0.05) in RIR breed. During the period of the 11-20 weeks feed conversion of birds seems to be better than the period of the 0-10 weeks. The results have shown that Desi and Fayoumi chicks had lowest (P<0.05) mortality. The mortality during the rearing period (0-10 weeks) was higher than the growing period (11-20 weeks) in all three breeds. The meat composition had shown no-significance (P>0.05) difference among three breeds at 12 and 20 weeks of age.

Haemato-biochemical Parameters of rural chickens

The biochemical values in all of the three breeds are shown in Table 3. There was no significant (P>0.05) difference in the biochemical values among three breeds. The hematological values in three rural breeds have been depicted in Table 4. There was non-significant (P>0.05) difference in hematological values amongst three breeds.
It is revealed from the present findings that Total Erythrocyte Counter (TEC), Hb and PCV increased with the advancement of age, being lowest in 4 weeks and highest in 20 weeks of age. However, Erythrocyte Sedimentation Rate (ESR), MCV and MCH values decreased gradually with the advancement of age. Values of ESR in Desi, Fayoumi and RIR are inversely related with age.

Table 2. Comparative growth performance and meat composition of Desi, Fayoumi and Rhode Island Red chickens during brooding and growing periods (up to 20 weeks)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Age (Weeks)</th>
<th>Desi</th>
<th>Fayoumi</th>
<th>Rhode Island Red</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day old weight (g/bird)</td>
<td></td>
<td>30.57±0.22 a</td>
<td>27.09±0.30 b</td>
<td>32.79±0.38 a</td>
<td>0.050</td>
</tr>
<tr>
<td>Body weight (g)</td>
<td>0-10</td>
<td>577.54±9.03 b</td>
<td>547.25±7.73 c</td>
<td>673.75±11.65 a</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td>710.79±10.25 b</td>
<td>638.39±8.86 b</td>
<td>1012.61±17.21 b</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0-20</td>
<td>1288.33±15.15 b</td>
<td>1185.64±9.16 c</td>
<td>1686.36±21.36 a</td>
<td>0.000</td>
</tr>
<tr>
<td>Body weight gain (g/bird)</td>
<td></td>
<td>546.97±3.25 b</td>
<td>520.16±2.56 b</td>
<td>640.96±4.75 c</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>0-10</td>
<td>680.22±5.11 b</td>
<td>611.31±3.98 c</td>
<td>979.82±7.47 a</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td>1257.76±4.52 b</td>
<td>1158.55±3.69 c</td>
<td>1653.57±5.15 a</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0-20</td>
<td>4308.44±11.35 a</td>
<td>3507.87±9.54 b</td>
<td>3490.02±8.47 c</td>
<td>0.003</td>
</tr>
<tr>
<td>Average feed intake (g/bird)</td>
<td>11-20</td>
<td>3376.25±8.96 b</td>
<td>2687.62±10.58 b</td>
<td>3787.16±9.67 a</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>0-20</td>
<td>7858.81±148.32 a</td>
<td>6177.18±110.25 c</td>
<td>7521.16±201.74 a</td>
<td>0.000</td>
</tr>
<tr>
<td>Feed conversion</td>
<td></td>
<td>7.48±0.17 a</td>
<td>6.41±0.22 b</td>
<td>5.18±0.15 b</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td>4.75±0.21 a</td>
<td>4.21±0.18 b</td>
<td>3.74±0.29 a</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0-20</td>
<td>6.21±0.66 a</td>
<td>5.21±0.15 b</td>
<td>4.46±0.31 a</td>
<td>0.001</td>
</tr>
<tr>
<td>Mortality (%)</td>
<td></td>
<td>2.01±0.04 c</td>
<td>3.34±0.07 b</td>
<td>6.53±0.11 a</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>11-20</td>
<td>1.87±0.03 b</td>
<td>1.88±0.02 b</td>
<td>3.35±0.08 a</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0-20</td>
<td>3.87±0.05 c</td>
<td>5.09±0.05 b</td>
<td>9.31±0.19 a</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Meat Composition (%)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Dry matter</th>
<th>Crude Protein</th>
<th>Crude fat</th>
<th>Total ash</th>
<th>Dry matter</th>
<th>Crude Protein</th>
<th>Crude fat</th>
<th>Total ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>12</td>
<td>25.13±0.12</td>
<td>79.87±2.56</td>
<td>11.64±0.60</td>
<td>12</td>
<td>79.87±2.56</td>
<td>9.63±0.18</td>
<td>3.93±0.10</td>
</tr>
<tr>
<td>Crude Protein</td>
<td>12</td>
<td>25.45±0.15</td>
<td>8.37±1.99</td>
<td>9.35±0.34</td>
<td>12</td>
<td>81.37±4.57</td>
<td>10.79±0.47</td>
<td>4.08±0.15</td>
</tr>
<tr>
<td>Crude fat</td>
<td>12</td>
<td>25.45±0.15</td>
<td>81.37±4.57</td>
<td>81.46±2.87</td>
<td>20</td>
<td>81.46±2.87</td>
<td>81.46±2.87</td>
<td>81.46±2.87</td>
</tr>
<tr>
<td>Total ash</td>
<td>20</td>
<td>26.18±0.11</td>
<td>54.55±0.02</td>
<td>25.52±0.19</td>
<td>20</td>
<td>81.46±2.87</td>
<td>9.63±0.18</td>
<td>4.08±0.15</td>
</tr>
</tbody>
</table>

a,b,c: Means with different letters differ significantly (P ≤ 0.05)

Table 3. Mean values of serum glucose, triglyceride, cholesterol, calcium, protein, uric acid and alkaline phosphatase in Desi, Fayoumi and Rhode Island Red chickens at 20 weeks old

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Desi (mg/dl)</th>
<th>Fayoumi (mg/dl)</th>
<th>Rhode Island Red (mg/dl)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>219.52±2.45</td>
<td>217.47±1.63</td>
<td>210.55±3.54</td>
<td>0.600</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>513.87±5.21</td>
<td>522.36±3.57</td>
<td>535.69±5.78</td>
<td>0.650</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>106.36±0.98</td>
<td>107.22±0.61</td>
<td>109.21±1.59</td>
<td>0.800</td>
</tr>
<tr>
<td>Calcium</td>
<td>10.03±0.23</td>
<td>10.10±0.19</td>
<td>10.52±0.36</td>
<td>0.510</td>
</tr>
<tr>
<td>Protein</td>
<td>5.10±0.08</td>
<td>4.99±0.10</td>
<td>5.25±0.15</td>
<td>0.475</td>
</tr>
<tr>
<td>Uric acid</td>
<td>4.61±0.11</td>
<td>4.49±0.17</td>
<td>4.23±0.24</td>
<td>0.600</td>
</tr>
<tr>
<td>ALP (u/l)</td>
<td>1041.40±17.52</td>
<td>1054.12±12.22</td>
<td>1051.54±25.45</td>
<td>0.800</td>
</tr>
</tbody>
</table>

*Reference values of Clinical Diagnostic Division (1990)
Table 4. Normal haematological parameters in breeds of Desi, Fayoumi and Rhode Island Red breed during 4, 12 and 20 weeks of age

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Breed</th>
<th>4</th>
<th>12</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEC (106/mm³)</td>
<td>Desi</td>
<td>1.75±0.05</td>
<td>1.79±0.06</td>
<td>2.40±0.10</td>
</tr>
<tr>
<td></td>
<td>Fayoumi</td>
<td>2.59±0.05</td>
<td>3.22±0.09</td>
<td>3.36±0.07</td>
</tr>
<tr>
<td></td>
<td>RIR</td>
<td>1.80±0.20</td>
<td>1.97±0.04</td>
<td>2.61±0.15</td>
</tr>
<tr>
<td>Hb concentration (gm%)</td>
<td>Desi</td>
<td>7.70±0.17</td>
<td>7.73±0.15</td>
<td>8.54±0.14</td>
</tr>
<tr>
<td></td>
<td>Fayoumi</td>
<td>7.00±0.50</td>
<td>7.62±0.10</td>
<td>7.84±0.16</td>
</tr>
<tr>
<td></td>
<td>RIR</td>
<td>8.03±0.17</td>
<td>8.10±0.09</td>
<td>9.24±0.18</td>
</tr>
<tr>
<td>PCV (%)</td>
<td>Desi</td>
<td>27.63±1.12</td>
<td>28.26±0.55</td>
<td>31.15±0.67</td>
</tr>
<tr>
<td></td>
<td>Fayoumi</td>
<td>26.46±0.61</td>
<td>27.28±0.40</td>
<td>28.00±0.60</td>
</tr>
<tr>
<td></td>
<td>RIR</td>
<td>28.02±0.44</td>
<td>29.00±0.46</td>
<td>29.10±1.10</td>
</tr>
<tr>
<td>ESR in mm in 1st hour</td>
<td>Desi</td>
<td>1.06±0.01</td>
<td>0.76±0.01</td>
<td>0.31±0.01</td>
</tr>
<tr>
<td></td>
<td>Fayoumi</td>
<td>3.15±0.16</td>
<td>2.42±0.13</td>
<td>2.04±0.11</td>
</tr>
<tr>
<td></td>
<td>RIR</td>
<td>3.48±0.10</td>
<td>3.02±0.24</td>
<td>2.73±0.21</td>
</tr>
<tr>
<td>MCV (cubic micron)</td>
<td>Desi</td>
<td>166.55±6.24</td>
<td>163.0±2.60</td>
<td>128.45±7.90</td>
</tr>
<tr>
<td></td>
<td>Fayoumi</td>
<td>103.66±2.20</td>
<td>86.00±1.54</td>
<td>84.00±1.64</td>
</tr>
<tr>
<td></td>
<td>RIR</td>
<td>164.21±11.86</td>
<td>150.43±9.60</td>
<td>113.00±5.13</td>
</tr>
<tr>
<td>MCH (micro- micro gram or pictogram)</td>
<td>Desi</td>
<td>45.61±0.85</td>
<td>44.68±0.31</td>
<td>35.33±1.24</td>
</tr>
<tr>
<td></td>
<td>Fayoumi</td>
<td>27.75±0.34</td>
<td>24.22±0.42</td>
<td>23.76±0.09</td>
</tr>
<tr>
<td></td>
<td>RIR</td>
<td>48.16±8.46</td>
<td>43.33±2.50</td>
<td>35.48±1.77</td>
</tr>
<tr>
<td>MCHC (%)</td>
<td>Desi</td>
<td>27.90±1.11</td>
<td>27.33±0.70</td>
<td>27.49±0.32</td>
</tr>
<tr>
<td></td>
<td>Fayoumi</td>
<td>26.58±0.40</td>
<td>28.09±0.47</td>
<td>28.16±0.62</td>
</tr>
<tr>
<td></td>
<td>RIR</td>
<td>29.26±0.98</td>
<td>28.72±1.11</td>
<td>31.33±1.12</td>
</tr>
</tbody>
</table>

TEC= Erythrocyte Number; Hb= Hemoglobin; PCV= Packed Cell Volume; ESR= Erythrocyte Sedimentation Rate; MCV= Mean Corpuscular Volume; MCH= Mean Corpuscular Hemoglobin and MCHC= Mean corpuscular hemoglobin concentration

DISCUSSION

Performance of rural chickens

The average day old body weight of RIR, Desi and Fayoumi was recorded as 32.79, 30.57 and 27.09g, respectively. A similar trend had been observed by Farooq et al. (2001) and Khawaja et al. (2012a), who reported higher day-old chick weight in RIR (35.32 and 31.30g, respectively), in comparison to Desi (33.84 and 25.90g, respectively) and Fayoumi chicken (30.74 and 20.90g, respectively). Similarly, Yeasmin and Howlider (2013) indicated that live weight at hatching averaged 34.0 and 36.1 g for the Fayoumi and RIR, with insignificant sex difference for the two breeds. Recently, Kumar et al. (2014) had reported that the RIR had significantly (p<0.05) higher mean day old body weight (35.42±1.14 g) than that of 31.82±0.85g for Bovans White. The higher weight of newborn chicks of RIR could probably be due to the larger egg size.

This study showed that the Desi breed consumed more feed, followed by RIR and Fayoumi chickens. Kumar et al. (2014) had reported that the RIR had significantly (p<0.05) higher mean final body weight (1350±33.76g) and body weight gain (1314±31.77g) than those of 1220±36.55g and 1188±35.45g for Bovans White, respectively at 22 weeks of age. The values of body weight of RIR in above study have been lower than the current study. The results showing low body weight gain in Desi birds than RIR are in line with the findings of Sahota and Bhatti (2001), who had observed lower body weight gain in Desi in comparison to RIR and White Leghorn chicks at 8 weeks of age. Halima et al. (2006) reported that day old weight, final body weight, body weight gain and mortality rate in RIR were 35.2g, 1394g, 1359g and 18.3%, respectively. In the current experiment, day old weight and mortality rate of RIR was lower (32.79g and 9.31%, respectively). Similarly, Yeasmin and Howlider (2013) indicated that live weight at hatching averaged 34.0 and 36.1 g for the Fayoumi and RIR, with insignificant sex difference for the two breeds. Recently, Kumar et al. (2014) had reported that the RIR had significantly (p<0.05) higher mean day old body weight (35.42±1.14 g) than that of 31.82±0.85g for Bovans White. The higher weight of newborn chicks of RIR could probably be due to the larger egg size.

This study showed that the Desi breed consumed more feed, followed by RIR and Fayoumi chickens. Kumar et al. (2014) had reported that the RIR had significantly (p<0.05) higher mean final body weight (1350±33.76g) and body weight gain (1314±31.77g) than those of 1220±36.55g and 1188±35.45g for Bovans White, respectively at 22 weeks of age. The values of body weight of RIR in above study have been lower than the current study. The results showing low body weight gain in Desi birds than RIR are in line with the findings of Sahota and Bhatti (2001), who had observed lower body weight gain in Desi in comparison to RIR and White Leghorn chicks at 8 weeks of age. Halima et al. (2006) reported that day old weight, final body weight, body weight gain and mortality rate in RIR were 35.2g, 1394g, 1359g and 18.3%, respectively. In the current experiment, day old weight and mortality rate of RIR was lower (32.79g and 9.31%, respectively) than the above study, however, final body weight (1686g), and body weight gain (1653.57g) were noted to have been higher than the above study. The poor growth rate in Desi chickens, as observed in the present study, could be attributed to genetic built up of the birds. Recently, Dutta et al. (2012) reported that initial and final weight of Fayoumi chickens at day old to five weeks of age were 32.1g and 359.5g, respectively. Day old weight is higher than the present study. All three breeds had poor feed utilization, the
Fayoumi consumed 255 g more feed per kg of body weight than the White Leghorn and RIR. The difference in growth rate of chicken is due to interplay of multiple genes and this trait could be improved through genetic selection (Khawaja et al., 2012b). These differences in body weight could also be attributed to environmental conditions such as seasons, temperature, humidity and management.

Feed conversion of birds during the period of the 11-20 weeks was found to have been better than the period of the 0-10 weeks. A probable explanation is that with the increase of the age of the birds, their activity and making voice loudly also increases, which requires more maintenance energy. Due to that, birds may utilize the feed more efficiently (Khawaja et al., 2012a). Haque et al. (1999) found that feed conversion ratio was at 5.7 and 4.9 for Fayoumi and RIR, respectively in a group of three male and 20 females during the 6 to 17 weeks which is almost similar in the present study.

The lowest mortality was recorded for Desi and Fayoumi chicks. These results are in accordance with Parveen et al. (2013), who had reported that higher mortality had been observed in RIR (16.50%) than Fayoumi (10.76%) and Desi chicken (6.78%) under field conditions. The lower mortality in these chickens could be attributed to the better adaptability of these chickens to the local environment and lower growth rate. In this study, the mortality during the rearing period was higher than growing period in all breeds; thus further improvement in the managerial practices is necessary in order to reduce the mortality among the chicks, regarding the fact that no particular infectious disease was reported during the experimental period. In Bangladesh, the mortality of different exotic breeds (Lohmann Brown, RIR and Fayoumi) under semi-scavenging conditions was at 27.6, 32.6 and 25.2%, respectively (FAO, 2005). Recently, Tadesse (2014) had reported that the average annual mortality of chicks was about 3.98% for local, 3.7% for cross breed and 3.2% for exotic breed chicks under field condition. Average mortality of growers (birds with 2 to 6 months of age) was set at 1.97% per year for local birds, 2.3% for cross breeds and 2.2% for exotic breeds. He explained that poor protection from adverse climatic conditions (very hot and cold weather) increased the severity of disease outbreaks resulting in losses of up to 70% of the flock at 12 weeks of age in field condition.

Reports regarding meat composition in rural chicken are rare in literature for the comparison to the present composition. These results are in line with the findings of Haunshi et al. (2013) who had reported that no significant difference had been observed in meat composition of Aseel and Kadaknath rural breeds at 10 and 20 weeks of age. Similarly, Khawaja et al. (2012b) reported that meat composition had no significant (P>0.05) difference among pure (RIR and Fayumi) and crossbred chickens at 20 weeks of age. Poultry meat quality may be affected by several factors such as genotype, rearing condition and feeding that have an impact on muscle metabolism as well as on chemical composition. Fanatico et al. (2005) studied slow-, medium- and fast-growing genotypes raised outdoor and slaughtered at similar live weights and found no significant differences among genotypes as for dry matter, fat and ash even if slow-growing birds were numerically lower in fat. In thigh meat the differences in fat content were more relevant than in the breast, with slow growing birds showing half of the content as opposed to fast growing. Tougan et al. (2013) reported that chicken meat quality is strongly affected by genotype whereas feeding exerts a minor effect. The appropriate choice of genotype seems to play a very important role in the quality of organic chicken products.

Haemato-biochemical parameters of rural chickens

The mean values of serum glucose (219.52 mg/dl), triglyceride (513.87mg/dl), uric acid (4.61mg/dl) and total protein (5.10mg/dl) in Desi birds in the present study are close to findings of Khawaja et al. (2012a), who had reported that serum glucose (221.80mg/dl), triglyceride (528.0mg/dl), uric acid (4.75mg/dl) and total protein (5.23mg/dl) in Desi birds. Elagib et al. (2012) reported that overall mean of total protein, uric acid and cholesterol in three Sudani chickens (Betwil, Bare Neck and Large Beladi) were found as 4.27, 7.42 and 99.97mg/dl, respectively, which are close to the values of the current study except for uric acid value tending to be higher.

Bhatti et al. (2002) reported that serum cholesterol level in different strains [Desi, Fayoumi, Crossbred (RIRxFayoumi) and Naked Neck)] during pre- and post-laying period was same which implies that laying condition did not exert any extra demand on cholesterol bio-synthesis and its release in the blood circulation. In the present study, serum cholesterol of Desi, Fayoumi and RIR chickens was found within range of reference (Clinical Diagnostic Division, 1990). However, these values were lower than the values reported in crossbred (RIR male × Fayoumi female) cockerels (187.80 mg/dl) at 12 weeks of age by Khan et al. (2011).

In the process of egg formation, the availability of dietary calcium (Ca) is critical. Ovulating hens have significantly higher Ca levels than non-reproductive females (Ritchie et al., 1994). This agrees with Elagib et
al. (2012), who compared the levels of serum calcium of Sudanese rural chickens as 14.3, 14.72 and 14.48 mg/dl for Betwil, Bare Neck and Large Beladi, respectively. There was no difference in Ca level among three breeds at laying stage in the present experiment. The birds were found to be equally affected by the stage of egg laying during which there was mobilization of Ca for shell formation. In the current experiment, the serum Ca level of three rural chickens was lower than domestic turkey (11.7-38.7 mg/dl), domestic fowl (13.2-23.7 mg/dl) and bobwhite quail (14.1-15.4 mg/dl) (Ritchie et al., 1994).

Total protein level in three rural chickens used in this study was higher (4.99-5.25mg/dl) than the reference range i.e. 3.0-4.90mg/dl (Clinical Diagnostic Division, 1990). In female birds, a considerable increase in total protein concentration occurs just prior to egg laying, which could be recognized to an estrogen-induced increase in globulins. The proteins were the yolk precursors (vitellogenin and lipoproteins), which were synthesized in the liver and transported via the plasma to the ovary where they were incorporated in the oocytes (Ritchie et al., 1994). Moreover, total proteins of hens in three chickens were lower than the normal range of the domestic turkey (5.29-7.6 mg/dl) and pheasant (male=5.65 mg/dl; female=6.06 mg/dl), but higher than the normal range of the guinea fowl (3.5-4.4 mg/dl) and common quail (3.4-3.6 mg/dl) (Ritchie et al., 1994).

In birds, uric acid is a major product of the catabolism of nitrogen, being the end product of protein/amino acid metabolism, indicates similar rate of protein/amino acid metabolism in different bird groups though genetically different (Elagib et al., 2012). Age and diet may influence the concentration of blood uric acid in birds. The uric acid values (4.23-4.61mg/dl) of three chickens in the present study are close to the values (4.16-4.63 mg/dl) determined by Bhatti et al. (2001) in Desi and Naked Neck hens. However, these values are lower than the values (7.425mg/dl) resolute by Elagib et al. (2012) in Sudanese rural chickens.

During the egg shell formation process, there is an increase in activity of ALP in the blood of laying hens (Khawaja et al., 2013) due to the calcification process. The ALP value quantitatively was lower in Desi chicken (1041.40u/l) than Fayoumi (1054.12u/l) and RIR (1051.54u/l). These results are in line with the findings of Bhatti et al. (2002), who had found lower ALP values in Desi chicken (841.51u/l) than in Fayoumi (1653.04u/l) and crossbred (RIRxFayoumi) chickens (1656.5u/l). Khawaja et al. (2013) reported that the average value of ALP (1100u/l) in crossbred chickens of RIR and Fayoumi is very close to the values of present study.

Higher ESR at early age in this study was in accordance with those of Khawaja et al. (2012a). MCV values in this study for Fayoumi are lower than Desi and RIR. Similar results were reported by Khawaja et al. (2012a). Similarly, Mean Corpuscular Hemoglobin Concentrations values are similar with those quoted by Khawaja et al. (2012a). Haematological parameters in birds have been shown to be influenced by various factors such as age, sex, season and nutrition. In general haematological parameters are affected by diurnal fluctuations or changes in daily physical and metabolic activities (Piccione et al., 2005).

CONCLUSION

It can be concluded that overall, the RIR chicken performed better than Fayoumi and Desi chickens. However, a lower mortality rate had been noticed in Desi chicken. One of the most important positive characters of rural chicken is their hardiness, which is ability to tolerate the harsh environmental condition and poor husbandry practices without much loss in production. It was suggested that the low production performance of rural breeds of chickens may be improved through improvement in husbandry practices, better healthcare and also through selection and crossbreeding. Upgradation of such rural breeds of chickens through different breeding technique helps to increase the productivity of the germplasm and also their conservation in their natural habitat as the rural people will be very happy to rear them for their adoptability to harsh environment.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

Abida Parveen, Tabinda Khawaja, Naveed Iftikhar and Saira Khan deigned and performed the experiment. Sohail Hassan Khan analyzed data and wrote the manuscript.

REFERENCES

Khawaja T, Khan SH, Mukhtar N and Parveen A (2012b). Comparative study of growth performance, meat quality and haematological parameters of Fayoumi,

file:///C:/Users/sohail/Downloads/16282-59075-1-PB.pdf
Performance, Serum Biochemical Parameters and Immunity in Broiler Chicks Fed Dietary *Echinacea purpurea* and *Thymus vulgaris* Extracts

Hassan Habibi1* and Sobhan Firouzi2

1Assistant’s professor of Agriculture and Natural Resources College, Persian Gulf University, Bushehr, Iran
2Avian Diseases Research Center, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

*Corresponding author’s Email: h.habibi@pgu.ac.ir

Received: 04 Aug 2017
Accepted: 06 Sept 2017

ABSTRACT

The objective of this study was to evaluate the effect of administrating herbal extracts of *Echinacea purpurea* and *Thymus vulgaris* into broilers drinking water on performance, immune response and serum biochemical and Phytohemagglutinin. 270 day-old Ross chicks were assigned to nine dietary treatments in a randomized manner. Each treatment was given to two replicates of 15 birds. The variables of *T. vulgaris* extract were 1% and 2% and variables of *E. purpurea* extract were 0%, 1% and 2% in drinking water. Body Weight (BW), Feed Intake (FI) and Feed Conversion Ratio (FCR) were recorded at the end of the experiment. Antibody responses against Newcastle disease viruses were measured after blood sampling at 42 days of age. The plant extracts did not affect BW, FI and FCR (P>0.05). Antibody titers against NDV were significantly affected by the administration of *E. purpurea* (P<0.05). The highest elevation was for the birds that were administrated with 2% *E. purpurea* from 1 to 42 days (P<0.05). Administration of thyme extracts had improved serum biochemical parameters as compared with *Echinacea* and control group. It was concluded that under these research conditions, high levels of *E. purpurea* extracts had increased the broiler chickens’ immunity.

Key words: Broiler, *Echinacea purpurea* extract, Immunity, Performance, *Thymus vulgaris* extract.

INTRODUCTION

Antibiotics have been widely used in poultry feed as growth promoters for more than 50 years. In the time that antibiotics were either used for curing or as growth promoters, some parts of the profitable microorganism will become damaged and resistance to diseases such as *Salmonella* and the other pathogens will decrease. Increased interest in curbing antibiotic use to reduce antimicrobial resistance has led to a growing interest in alternative growth promoters. Herbal extracts are being used as feed additives to improve performance, feed intake, secretion of digestive tract juices and immune system of animals especially under the intensive management systems (William and Losa, 2001; Amouzmehr et al., 2012).

The *Echinacea purpurea* is commonly known as an immune stimulating substance. Its palliative use in human medicine has been well established. *E. purpurea* has been shown to have non-specific immuno-stimulatory properties *in vitro* (Bauer and Wagner, 1991), including increased phagocytosis (Stotzem et al., 1992), increased cytokine production (Burger et al., 1997), and natural killer cell activity (See et al., 1997). *Thymus vulgaris* has received more attention due to its antioxidant (Bolukbasi and Erhan, 2007), antibacterial (Dorman and Deans, 2000; Ngouana Tadjong et al., 2017) anti-coccidial (Jamroz et al., 2003) and antifungal properties (Hertrampf, 2001). As, growth performance of animals is influenced strongly by the health and immune status, the objective of this study was to evaluate the effect of the utilization of *Echinacea purpurea* and *Thymus vulgaris* extracts in the feeding of...
broilers on the growth performance and immune responses.

MATERIALS AND METHODS

270 day-old broiler chickens (Ross308) of mixed sex were randomly divided into nine groups (30 birds/group) and housed in pens of identical size in a deep litter system with wood shaving for flooring. Each group has 2 replicates (15 birds/pen). Strict sanitation practices were maintained in the house before and during the course of the experiment. All birds were fed a standard commercial diet based on corn and soybean meal and had free access to feed and water (Table 1). Treatment groups were:

1. Control group (plain water)
2. One mL/L (1%) of *E. purpurea* from 1 to 42 day
3. Two mL/L (2%) of *E. purpurea* from 1 to 42 day
4. One mL/L (1%) of *E. purpurea* from 21 to 42 day
5. Two mL/L (2%) of *E. purpurea* from 21 to 42 day
6. One mL/L (1%) of *T. vulgaris* from 1 to 42 day
7. Two mL/L (2%) of *T. vulgaris* from 1 to 42 day
8. One mL/L (1%) of *T. vulgaris* from 21 to 42 day
9. Two mL/L (2%) of *T. vulgaris* from 21 to 42 day

The live body weight of birds of all groups at 42 days of age was taken. Feed intake and their Feed Conversion Ratio (FCR) were calculated. Sera samples for subjecting to Haemagglutination Inhibition (HI) tests were obtained from all birds of each group following collection of 3mL blood (from wing vein) at 42 days of age to determine the antibody titers of Newcastle disease vaccines. Vaccination program is presented in table 2. To determine some of the serum factors (HDL, LDL, TG, Cholesterol, Albumin, Total Protein, and Glucose), blood samples 42 days of age were collected. At 42 days of age, four birds per replicate were randomly chosen, slaughtered and their lymphoid organs (Bursa of Fabricius, spleen and Thymus) were collected, weighed and calculated as a percentage of live body weight. At d 42 of age, eight chickens per treatment were injected in the right wing with a Phytohemagglutinin (PHA) (Sigma-Aldrich, St. Louis, MO) solution (100 μg in 100 μl PBS (phosphate-buffered saline) and immediately in the left wing with 100 μl PBS. The thickness of the right and left wing web was measured prior to the injection and at 6th, 12th, 24th, 48th, and 72nd hours post PHA injection using a digital caliper; then, the chickens were killed by cervical dislocation. The wing web swelling (WWS) response was expressed as a swelling index, calculated as follows: Swelling index = [(thickness of right wing web post PHA injection − initial thickness of right wing web) − (thickness of left wing web post PBS injection − initial thickness of left wing web)] (Konieczka et al., 2017). The data were analyzed using computerized statistical program (SPSS version 15.0) to determine the Mean ±SD of antibody titer and body weight. Significance differences were denoted by P < 0.05.

Ethical approval

This study was carried out in strict accordance with the recommendations of institutional guidelines for the care and use of laboratory animals. Chickens were humanly handled in respect of the ethical standards laid down in 1964 Declaration of Helsinki and its later amendments.

Table 1. Nutritional composition of the diet

<table>
<thead>
<tr>
<th>Diet composition</th>
<th>Starter (0-10d)</th>
<th>Grower (11-28d)</th>
<th>Finisher (29-42d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolizable energy, kcal/kg</td>
<td>2930</td>
<td>3050</td>
<td>3150</td>
</tr>
<tr>
<td>Crude protein %</td>
<td>23</td>
<td>19.5</td>
<td>18.5</td>
</tr>
<tr>
<td>Digestible lysine %</td>
<td>1.32</td>
<td>1.18</td>
<td>1</td>
</tr>
<tr>
<td>Methionine %</td>
<td>0.55</td>
<td>0.5</td>
<td>0.45</td>
</tr>
<tr>
<td>met + cys %</td>
<td>0.98</td>
<td>0.88</td>
<td>0.82</td>
</tr>
<tr>
<td>Threonine %</td>
<td>0.88</td>
<td>0.78</td>
<td>0.7</td>
</tr>
<tr>
<td>Tryptophan %</td>
<td>0.23</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>Arginine %</td>
<td>1.5</td>
<td>1.25</td>
<td>1.13</td>
</tr>
<tr>
<td>Calcium %</td>
<td>0.97</td>
<td>0.94</td>
<td>0.9</td>
</tr>
<tr>
<td>Available phosphorus %</td>
<td>0.48</td>
<td>0.45</td>
<td>0.42</td>
</tr>
<tr>
<td>Sodium %</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Chlorine %</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Table 2. Vaccination Program

<table>
<thead>
<tr>
<th>Age</th>
<th>Day 1</th>
<th>Day 8</th>
<th>Day 8</th>
<th>Day 16</th>
<th>Day 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine</td>
<td>Infectious Bronchitis-H120</td>
<td>Newcastle Disease-B1</td>
<td>Newcastle-Influenza</td>
<td>Infectious Bursal Disease-D78</td>
<td>Infectious Bursal Disease-D78</td>
</tr>
<tr>
<td>Route</td>
<td>Corse spray</td>
<td>Drinking water</td>
<td>Injection</td>
<td>Drinking water</td>
<td>Drinking water</td>
</tr>
</tbody>
</table>
RESULTS

The effects of herbal extracts on chicken’s body weight gain, total feed intake, and FCR have been presented in table 3. Results have shown that the administration of T. vulgaris from 21 to 42 days had affected growth performance more (body weight gain and feed consumption ratio) but these two parameters weren’t statistically different (P>0.05). As shown in table 3, antibody titers against NDV were significantly affected by administration of E. purpurea (P<0.05). The highest elevation was for the birds that administrated 2% E. purpurea from 1 to 42 days (P<0.05).

Table 4 summarizes the data obtained on the effect of experimental treatments on serum hematological parameters. No significant influence of experimental diets on albumin was observed (P>0.05). The serum total protein, Triglyceride and HDL of the birds treated with (2%) of T. vulgaris from 1 to 42 days old were better than the others (P<0.05). The feeding of the broilers with (1%) of T. vulgaris from 1 to 42 days resulted in a marked (P>0.05) decrease in LDL cholesterol concentration compared to other treatments. Hemoglobin concentration and Cholesterol in groups treated T. vulgaris from 1 to 42 days was respectively higher and lower than the other groups (P<0.05) respectively. Table 5 indicates the effect of treatments on lymphoid organs’ weight at 42 day. As it is shown, the Bursa weight in birds treated with E. purpurea had increased and the differences in Spleen and Thymus weights were not statistically significant.

The effects of the dietary Echinacea purpurea and Thymus vulgaris extracts on PHA challenge on the WWS response are shown in Table 6. PHA challenge led to a higher increase in wing web thickness in chickens fed with E. purpurea diets than in those fed T. vulgaris diets (P<0.05). WWS was the highest at 24 h post PHA injection in group 3, post PHA injection (P<0.05).

DISCUSSION

There are no appetizing effects with both Echinacea and Thymus. The feed intake and FCR of the broilers didn’t show a varying influence by administration with different dosages of Echinacea and Thymus in comparison with control group. Other authors have reported also a missing effect of various supplementations of mixed herbs on the feed intake of broilers and layers (Roth-Maijer et al., 2005; Nasir and Grashorn, 2010). Toghyani et al. (2010) reported that the low dosage of Thyme has had a significant effect on broiler body weight and their feed conversion ratio. But Tekeli et al. (2006) and Demir et al. (2008) had reported opposite results; they found that thyme had no influence on broilers performance. Ngouana Tadjong et al. (2017) reported that feed intake, live body weight, weight gain and feed conversion ratio are affected by using thyme and oregano essential oil in broiler diets.

Inability to improve feed conversion ratio with E. purpurea is in agreement with the findings of Habibian et al. (2011) who had also reported that E. purpurea supplementation as a feed additive didn’t improve feed conversion ratio. Absence of positive effect of some herbal extracts in some experiments may be due to using a smaller dose which was insufficient to produce its effect on poultry. Improving immunity in poultry production is very important to prevent common important diseases. There was a significant effect on the immunity of treated chicks in the present study. All chicks that were administrated E. purpurea had significantly higher antibody titer against T. vulgaris (P<0.05). Among them, the highest (8.9) increasing was belong to 2% E. purpurea extract from day old to 42 days (P<0.05).

Our findings indicated that the dietary E. purpurea could not only affect the PHA-induced swelling response, but also increased the weight of Bursa. The PHA-induced WWS is a good indicator of acquired immunity and allows the assessment of leucocyte interactions during the immune response (Konieczka et al., 2017). Increasing in antibody titer of the birds administrated E. purpurea are consonant with the increasing of the weight of bursa. The studies of the immune system have shown that some herbs such as coneflower (Echinacea purpurea) were most effective in achieving immune system improvement, because this herb had increased the stimulation of non-specific immune system. It is though that immune enhancement of Echinacea is provided by certain polysaccharides, flavonoids and isobutylamides (Rehman et al., 1999). Also, herbs like thyme (Thymus vulgaris) that are rich in active compounds such as flavonoids extend the activity of vitamin C, act as antioxidants and may therefore enhance the immune function (Manach et al., 1996).

Obtained data from biochemical parameters showed that supplementing broiler diet with thyme extracts had insignificant better effect on cholesterol, triglyceride, LDL, total protein, albumin and hemoglobin ratio against supplementing Echinacea. In agreement with our finding, Ali (2014) and Toghyani et al. (2010) reported supplementing diets with thyme leaves powder had no significant effect (P≥0.05) on serum parameters. Thyme supplementation in broiler diets significantly increased glucose level compared to those of the control group. The possible reason for increasing serum glucose may be due to the abdominal lipids catabolism of gluconeogenesis process as feeding inclusion thyme by birds, since crushed thyme consumption in broiler chickens has been reported to increase the serum glucose as mentioned by El-Ghousein and Al-Beitawi (2009).
Table 3. Effects of *E. purpurea* and *T. vulgaris* on growth performance and antibody titer (log₂ HI titer) against Newcastle virus (M ± SE)

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Body weight (g)</th>
<th>Feed intake (g)</th>
<th>Feed conversion (g/g)</th>
<th>Antibody titer (log₂ HI titer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2477±226.1</td>
<td>4260</td>
<td>1.72</td>
<td>6.5±0.15</td>
</tr>
<tr>
<td>Group 1</td>
<td>2412±268.3</td>
<td>4200</td>
<td>1.74</td>
<td>8.2±0.02</td>
</tr>
<tr>
<td>Group 2</td>
<td>2407±277.6</td>
<td>4170</td>
<td>1.73</td>
<td>8.9±0.01</td>
</tr>
<tr>
<td>Group 3</td>
<td>2410±318.8</td>
<td>4170</td>
<td>1.73</td>
<td>7.4±0.1</td>
</tr>
<tr>
<td>Group 4</td>
<td>2526±230.0</td>
<td>4320</td>
<td>1.71</td>
<td>8.1±0.18</td>
</tr>
<tr>
<td>Group 5</td>
<td>2389±300.5</td>
<td>4325</td>
<td>1.81</td>
<td>6.5±0.14</td>
</tr>
<tr>
<td>Group 6</td>
<td>2434±252.7</td>
<td>4260</td>
<td>1.75</td>
<td>6.6±0.02</td>
</tr>
<tr>
<td>Group 7</td>
<td>2567±232.8</td>
<td>4340</td>
<td>1.69</td>
<td>6.4±0.13</td>
</tr>
<tr>
<td>Group 8</td>
<td>2460±272.1</td>
<td>4260</td>
<td>1.73</td>
<td>6.3±0.19</td>
</tr>
</tbody>
</table>

The different superscripts on the same line are significantly different (P < 0.05); *Mean ± standard deviation

Table 4. Effect of experimental diets on serum biochemical parameters of broilers at d 42.

<table>
<thead>
<tr>
<th>Factor (mg/dl)</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Group 6</th>
<th>Group 7</th>
<th>Group 8</th>
<th>Group 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Glucose</td>
<td>127±4.08a</td>
<td>117.5±8.34a</td>
<td>123.5±7.18a</td>
<td>129.25±10.5bc</td>
<td>116.5±4.79a</td>
<td>118.5±9.67a</td>
<td>122.75±9.97bc</td>
<td>131.25±12.97bc</td>
<td>124.5±10.5ac</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>95.5±23.33ab</td>
<td>97.25±17.11ab</td>
<td>96±23.93ab</td>
<td>102.75±16.35b</td>
<td>95.5±19ab</td>
<td>72.75±7.5ab</td>
<td>71.25±7.67ab</td>
<td>85.25±11.58bc</td>
<td>84.25±11.35ab</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>58±6.16b</td>
<td>53.50±9.84b</td>
<td>56±8.52b</td>
<td>51.25±12.12b</td>
<td>54.50±4.65b</td>
<td>44.50±1.95bc</td>
<td>38.50±13.69a</td>
<td>41.25±19.5b</td>
<td>42.5±11.81b</td>
</tr>
<tr>
<td>LDL</td>
<td>47±11.9c</td>
<td>43.25±8.9bc</td>
<td>45.5±7.32c</td>
<td>46.75±4.39c</td>
<td>36.75±8.65f</td>
<td>27.25±4.11c</td>
<td>31±9.09ab</td>
<td>30±9.2bc</td>
<td>29.25±9.28c</td>
</tr>
<tr>
<td>HDL</td>
<td>52.25±7.5a</td>
<td>61.25±11.5abc</td>
<td>60.25±4.92d</td>
<td>64.75±4.11b</td>
<td>59.75±8.05bc</td>
<td>72.50±7.9cd</td>
<td>76.25±5.90c</td>
<td>63.75±6.70bc</td>
<td>68±7.11bcd</td>
</tr>
<tr>
<td>Total protein</td>
<td>3.80±0.59a</td>
<td>3.97±0.22abc</td>
<td>4.09±0.11abc</td>
<td>4.22±0.11bc</td>
<td>3.80±0.9c</td>
<td>4.32±0.07c</td>
<td>4.41±0.07c</td>
<td>4.18±0.06abc</td>
<td>4.05±0.19abc</td>
</tr>
<tr>
<td>Albumin</td>
<td>1.42±0.09a</td>
<td>1.47±0.03a</td>
<td>1.41±0.06a</td>
<td>1.39±0.04a</td>
<td>1.38±0.06a</td>
<td>1.46±0.03a</td>
<td>1.44±0.03a</td>
<td>1.39±0.01a</td>
<td>1.47±0.04a</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>7.85±0.32a</td>
<td>8.08±0.39ab</td>
<td>8.31±0.06bcd</td>
<td>7.97±0.24ab</td>
<td>8.25±0.09bc</td>
<td>9.40±0.11c</td>
<td>9.06±0.29f</td>
<td>8.49±0.3cd</td>
<td>8.69±0.16d</td>
</tr>
</tbody>
</table>

The different superscripts on the same line are significantly different (P < 0.05); *Mean ± standard deviation

Table 5. Effect of experimental diets on weights of lymphoid organs at day 42.

<table>
<thead>
<tr>
<th>Lymphoid organ weight</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Group 6</th>
<th>Group 7</th>
<th>Group 8</th>
<th>Group 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bursa/BW (gr)</td>
<td>0.144±0.007a</td>
<td>0.168±0.005c</td>
<td>0.18±0.011d</td>
<td>0.177±0.011d</td>
<td>0.155±0.009abc</td>
<td>0.148±0.004ab</td>
<td>0.15±0.007ab</td>
<td>0.16±0.007bc</td>
<td>0.16±0.0007bc</td>
</tr>
<tr>
<td>Spleen/BW (gr)</td>
<td>0.113±0.002abc</td>
<td>0.11±0.002abc</td>
<td>0.12±0.002d</td>
<td>0.114±0.002abc</td>
<td>0.118±0.005cd</td>
<td>0.113±0.002abc</td>
<td>0.117±0.005abc</td>
<td>0.111±0.001a</td>
<td>0.113±0.002abc</td>
</tr>
<tr>
<td>Thymus/BW (gr)</td>
<td>0.195±0.033a</td>
<td>0.26±0.04b</td>
<td>0.247±0.03ab</td>
<td>0.24±0.05ab</td>
<td>0.242±0.03ab</td>
<td>0.212±0.03ab</td>
<td>0.212±0.04ab</td>
<td>0.22±0.04ab</td>
<td>0.227±0.04ab</td>
</tr>
</tbody>
</table>

The different superscripts on the same line are significantly different (P < 0.05); *Mean ± standard deviation

Table 6. Phytohemagglutinin (PHA) injection time on the wing web swelling response in chickens challenged with PHA

<table>
<thead>
<tr>
<th>Wing web reaction (PHA-P)</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Group 6</th>
<th>Group 7</th>
<th>Group 8</th>
<th>Group 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulation index 24 h (mm)</td>
<td>1.22±0.04bc</td>
<td>1.55±0.08f</td>
<td>1.76±0.1f</td>
<td>1.48±0.07f</td>
<td>1.52±0.06f</td>
<td>1.35±0.05ed</td>
<td>1.3±0.02ed</td>
<td>1.15±0.05a</td>
<td>1.37±0.03bc</td>
</tr>
<tr>
<td>Stimulation index 48 h (mm)</td>
<td>1.31±0.04bc</td>
<td>1.69±0.06e</td>
<td>1.71±0.05e</td>
<td>1.71±0.1e</td>
<td>1.47±0.04ed</td>
<td>1.36±0.04fd</td>
<td>1.53±0.04d</td>
<td>1.28±0.03b</td>
<td>1.44±0.01ed</td>
</tr>
</tbody>
</table>

The different superscripts on the same line are significantly different (P < 0.05); *Mean ± standard deviation
CONCLUSION

Both herbal extracts (Echinacea and thyme) used in drinking water did not improve the performance of broilers. However, Echinacea extracts had significantly improved the immune response of birds to the NDV vaccine, therefore, more studies with different growth facility need to be performed to analyze the effect of herb extracts on the performance, carcass yield, hematology and immune response of poultry.

Competing interests
The authors have no competing interests to declare.

Authors’ contributions
The present study was funded by H Habibi and S Firouzi. Habibi and Firouzi were also involved in the collection of data, statistical analysis and drafting of the manuscript. Both authors read and approved the final manuscript.

REFERENCES

Doi: 10.5187/IAAST.2012.54.3.185.

Doi:10.1016/S0192-0561(97)00061-1.

Roth-Maier D, Barbara A, Böhmer M, Nicole M, Damme K and Brigitte PR (2005). Efficiency of Echinacea

Effect of Plumage Color and Body Weight on the Semen Quality of Naked Neck Chicken

Waseem Abbass¹, Adnan Jabbar¹*, Amjad Riaz¹, Muhammad Akram² and Yasir Allah Ditta³

¹ Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
² Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
³ Department of Animal Nutrition, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan

*Corresponding author’s Email: sbhatcheryislamabad@gmail.com

ABSTRACT

The low fertility of local chicken breeds is a major issue in backyard poultry system. The fertility rate varies among different males due to their difference in semen quality. The objective of the present study was to evaluate the effect of plumage color and body weight on the semen quality of Naked Neck chicken. The Naked Neck males (n=18) vary in three plumage colors (black=6, brown=6, white=6) and each color contains two body weight sub groups (heavy= >1600gm n=3 and light= <1600 gm n=3) were used in this study. The semen was collected and accessed individually for volume, pH, concentration, motility, livability and morphological defect. Black plumage color contained significantly more semen volume than brown color. The heavy body weight group (heavy= >1600 gm) contained significantly more semen volume (0.21±0.02 ml) and sperm concentration (1.88±0.06 ×10⁹ ml) than the lightweight group (light= <1600 gm). So, black plumage color roosters of can be use to enhance fertility rate of naked neck chickens.

Key words: Body weight, Naked neck chicken, Plumage color, Semen quality

INTRODUCTION

In spite of the highly developed commercial poultry system, backyard poultry system still occupies a significant position in Pakistan. The local native breeds are favored because of their adaptability, resistance and production of organic meat and eggs. Naked neck chickens have same protein requirement like other feather chickens (Daulat et al., 2015). The Naked Neck is a major native chicken breed which has high egg production, egg weight (44.86g), egg length (7.03mm), yolk weight (14.57mm), shell weight (4.29mm) and yolk height (3.29mm) (Adeleke et al., 2015) capacity with a higher heat tolerance than other native breeds. The Naked Neck chickens have problems of low fertility and hatchability than other native breeds (Peters et al., 2008). Naked neck roosters are criticized for low semen volume, higher abnormal sperms, and higher coiled tail defective sperm (Fathi et al., 2013).

To acquire a good fertility rate, the semen quality must be excellent to ensure the fertilization process. Assessment of semen characteristics gives an excellent indicator of their reproductive potential (Mothibedi et al., 2016). The proper selection, of physically elite roosters and hens, helps to improve these breeds containing higher genetic potential (Anjum et al., 2012). Semen quality can be accessed through the direct measurement of in vitro
semen parameters like volume, concentration, motility, livability and morphological abnormalities which determines the male fertility (Liu et al., 2008). However, this procedure of semen collection and assessment is very stressful, time consuming, costly and these facilities are not available in villages. Many researchers have recommended the use of secondary sexual characteristics such as: body weight and body color of males as good indicators of semen quality in chicken (McGary et al., 2003; Wilsonet al., 1979). The selection of healthy males with developed secondary sexual characteristics can improve fertility rate due to good quality semen (McGary et al., 2002). Thus, simple, reliable and indirect method for the estimation of semen quality based upon the correlation with secondary sexual traits should be evaluated (Udeh et al., 2011). To this date, there has been no information available about the selection of breeding cock for backyard poultry system in Pakistan.

Thus, the objective of the present study is to evaluate the effect of plumage color and body weight on semen quality of Naked Neck chicken for the selection of breeding cock.

MATERIALS AND METHODS

Ethical approval

Society for Protection and Care of Animals (SPCA) University of veterinary and animal sciences Lahore, Pakistan is the responsible to avoid any kind of act that is harmful to animals and make sure all rules and regulation regarding animal rights must have followed during experiment.

Experimental roosters

A total of 18 necked neck roosters (6 birds with brown color, 6 birds with black color and 6 birds with white color) were selected from avian research centre Ravi campus university of veterinary and animal sciences Lahore on base of physical appearance. Roosters do not have any physical abnormality, having red comb and wattle, shiny feathers, wet cloacae and free from any kind of parasites were selected. Roosters were divided into three groups on the bases of their colors (6 males/plumage color). Each plumage color category contained two body weight sub groups contained heavy and light body weight (>1600gm and <1600gm respectively, 3 males/body weight/plumage color). The birds in each sub group were caged separately and fed with a standard breeder diet (100g per day). The availability of water was round the clock. The photoperiod of 16L:8D was provided. The duration of experiment was six months.

Semen collection

The roosters were trained for semen collection prior the start of original experiment. Semen was collected twice weekly by abdominal massage technique in an insulin syringe (Riaz et al., 2004). The same person and same time during whole experiment to minimize the stress collected the semen 20 times.

Semen evaluation

Following parameters of individual ejaculate were estimated 20 times. The volume of ejaculate was measured by the insulin syringe. The pH was determined by digital pH meter (WTW, Germany). The concentration was determined by hemocytometer using the dilution rate of 1:500. Briefly, 2.5 ml formal saline was taken in a test tube and 5µl semen was added in a test tube after discarding 5µl of formal saline. The cover slip was placed on counting chamber and charged with diluted semen. Sperm were counted at 400× under light microscope. The number of sperm per ml of semen was calculated by using the formula.

\[
\text{Number of sperms/ml} = \frac{\text{number of sperms counted} \times 5 \times 10 \times 500 \times 1000}{1000}
\]

The motility was determined by placing a drop of extended semen on pre wormed glass slide at 37 °C. After putting a cover slip on the percentage of motile spermatozoa was estimated under light microscope at 100×. At least three fields (the procedure was repeated three times) were observed before taking the final value. Percentage of live spermatozoa was calculated by using eosin nigrosin staining technique. The small drops of semen and eosin nigrosin stain was mixed on pre wormed glass slide at 37 °C. A uniform thin smear was made with the help of another clean glass slide. After air drying, the slide was observed under light microscope at 400×. The spermatozoa containing unstained head was counted as live while stained head of spermatozoa counted as dead. Before taking final value two hundred spermatozoa were counted. Eosin nigrosin stained slide was observed by using oil emersion lens at 1000× of light microscope to estimate morphological defects. The two hundred sperms were counted before taking final value.

Statistical analysis

General linear procedure was performed for all plumage colors (brown, black and white) and two body weight groups i.e. heavy and light (3x2 factorial). All data were presented as Mean±SEM All analyses were performed using statistical software SAS Enterprise Guide® (version 4.2, SAS Inst. Inc., Cary, NC, USA).
RESULTS AND DISCUSSION

In the present experiment, the effect of body weight and plumage color on semen quality and physiological semen traits of Naked Neck chicken was evaluated. Better semen quality improves the fertility and hatchability traits which could be helpful for improvement of Naked Neck chicken breed.

Physiological traits of Naked Neck chicken semen
The values for semen parameter were as follows; volume (0.18 ml), motility (72.77%), concentration (1.82×10⁹/ml), pH (7.12), livability (83.25%), morphological defects (11.63%) (Table 1). The physiological traits of Naked Neck chicken semen were in accordance with the results of previous studies (Ajayi et al., 2011; Fathi et al., 2000).

Table 1. Physiological semen traits of Naked Neck chicken (n=18), Lahore, Pakistan (January to June 2016)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Means ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume ml</td>
<td>0.18 ± 0.009</td>
</tr>
<tr>
<td>Motility%</td>
<td>72.77 ± 0.52</td>
</tr>
<tr>
<td>pH</td>
<td>7.12 ± 0.007</td>
</tr>
<tr>
<td>Concentration×10⁹/ml</td>
<td>1.82 ± 0.03</td>
</tr>
<tr>
<td>Livability%</td>
<td>83.25 ± 0.65</td>
</tr>
<tr>
<td>Morphological Defects%</td>
<td>11.63 ± 0.53</td>
</tr>
<tr>
<td>Plasma Membrane Integrity%</td>
<td>83.71 ± 0.71</td>
</tr>
</tbody>
</table>

Effect of plumage color on semen quality of Naked Neck chicken
The semen volume was found higher (P<0.05) in black than brown plumage color while it did not differ (P>0.05) with white breed i.e. (black = 0.21±0.02 ml, white = 0.17±0.01 ml and brown = 0.16±0.01 ml). The maximum semen volume was harvested from heavy black roosters than all the other groups (0.27±0.02ml, P<0.05).

Table 2. Effect of plumage color on semen quality of Naked Neck chicken, Lahore, Pakistan (January to June, 2016)

<table>
<thead>
<tr>
<th>Items</th>
<th>Brown</th>
<th>Black</th>
<th>White</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>0.19±0.01 aA</td>
<td>0.27±0.02 bA</td>
<td>0.21±0.02 aA</td>
<td>0.22±0.01 A</td>
</tr>
<tr>
<td>Light</td>
<td>0.14±0.01 aA</td>
<td>0.14±0.01 bB</td>
<td>0.13±0.08 aB</td>
<td>0.14±0.007 B</td>
</tr>
<tr>
<td>Means</td>
<td>0.16±0.01 aA</td>
<td>0.21±0.02 bB</td>
<td>0.17±0.01 ab</td>
<td>--</td>
</tr>
<tr>
<td>Motility (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>75.00±1.62 aA</td>
<td>74.16±1.60 A</td>
<td>72.08±1.43 aA</td>
<td>73.75±0.89 A</td>
</tr>
<tr>
<td>Light</td>
<td>72.50±0.75 aA</td>
<td>72.08±1.14 aA</td>
<td>70.83±0.56 aA</td>
<td>71.80±0.49 A</td>
</tr>
<tr>
<td>Means</td>
<td>73.75±0.91 aA</td>
<td>73.12±0.98 aA</td>
<td>71.45±0.76 aA</td>
<td>--</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>7.14±0.01 aA</td>
<td>7.13±0.01 aA</td>
<td>7.10±0.04 aA</td>
<td>7.12±0.08 A</td>
</tr>
<tr>
<td>Light</td>
<td>7.13±0.02 aA</td>
<td>7.09±0.01 aA</td>
<td>7.11±0.02 aA</td>
<td>7.11±0.01 aA</td>
</tr>
<tr>
<td>Means</td>
<td>7.14±0.01 aA</td>
<td>7.11±0.01 aA</td>
<td>7.10±0.01 aA</td>
<td>--</td>
</tr>
<tr>
<td>Concentration×10⁹/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>1.92±0.08 aA</td>
<td>2.05±0.10 aA</td>
<td>1.85±0.08 aA</td>
<td>1.94±0.04 A</td>
</tr>
<tr>
<td>Light</td>
<td>1.72±0.03 aA</td>
<td>1.71±0.06 bB</td>
<td>1.67±0.04 aA</td>
<td>1.70±0.02 bB</td>
</tr>
<tr>
<td>Means</td>
<td>1.82±0.03 aA</td>
<td>1.88±0.06 aA</td>
<td>1.76±0.05 aA</td>
<td>--</td>
</tr>
<tr>
<td>Livability (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>84.41±1.40 aA</td>
<td>84.66±1.41 aA</td>
<td>81.54±1.90 aA</td>
<td>83.54±0.87 A</td>
</tr>
<tr>
<td>Light</td>
<td>85.04±1.24 aA</td>
<td>81.83±2.20 aA</td>
<td>82.04±1.50 aA</td>
<td>82.97±0.98 A</td>
</tr>
<tr>
<td>Means</td>
<td>84.72±0.91 aA</td>
<td>83.25±1.23 aA</td>
<td>81.79±1.19 aA</td>
<td>--</td>
</tr>
<tr>
<td>Morphological Defects (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>10.12±1.35 aA</td>
<td>10.04±1.52 aA</td>
<td>11.83±1.16 aA</td>
<td>10.66±0.77 A</td>
</tr>
<tr>
<td>Light</td>
<td>11.20±1.17 aA</td>
<td>12.62±1.53 aA</td>
<td>13.95±0.85 aA</td>
<td>12.59±0.70 A</td>
</tr>
<tr>
<td>Means</td>
<td>10.66±0.88 aA</td>
<td>11.33±1.09 aA</td>
<td>12.89±0.73 aA</td>
<td>--</td>
</tr>
</tbody>
</table>

a,b denote significant difference within the rows (P< 0.05); A,B denote significant difference within the columns (P< 0.05)
Mean volume was higher (P<0.05) in the heavy than the light weight group (0.22±0.01 and 0.14±0.07ml respectively). Mean concentration was recorded to be higher (P<0.05) in heavy than light weight group (1.94±0.04x10^9 and 1.70±0.02x10^9/ml respectively). Concentration was observed higher (P<0.05) in heavy black group than all light weight groups. Motility, pH, livability and morphological defects did not differ (P>0.05) among weight and plumage color groups (Table 2). The present study has shown that plumage color affects the volume of semen in the heavy weight group only in which black group contained higher volume. The semen volume and sperm concentration were influenced by body weight while other parameters were not affected. Similar to our results El-Hammady et al. (1995) found that heavy weight cocks contain higher (P<0.05) sperm concentration. Recently Galal (2007) reported the positive correlation between semen qualities and body weight. In chickens, the males are selected based on comb and wattle size, body weight and body color. Females prefer the healthy males with well developed secondary sexual characteristics may be due to high reproductive efficiency (Zuk et al., 1995). The development of secondary sexual characters has been associated with the androgen production. It has been stated that heavy weight males contain large and heavy testes associated with the androgen production. It has been stated that heavy weight males contain more semen volume and sperm concentration. More over continuous reduction in genes of indigenous chicken breed may lead to high embryo mortality in backyard poultry (Ajayi et al., 2016). It was concluded that heavy body weight rooster with black plumage color contain more semen volume and sperm concentration and can be used for breeding purposes in backyard poultry system.

Author’s contribution
Adnan Jabbar Ansari and Waseem Abbas were main responsible for tabulation of experimental data and article writing under supervision of Amjad Riaz, Muhammad Akram and Yasir Allah Ditta.

Competing interests
The authors declare that they have no conflict of interest with respect to the research, authorship, and/or publications of this article.

REFERENCES

Khan DR, Wecke C and Liebert K (2015). Does the Naked Neck Meat Type Chicken Yield Lower Methionine Requirement Data? Division Animal Nutrition Physiology, Department of Animal Sciences, Georg-August-University, Kellnerweg 6, 37077 Goettingen, Germany. Doi:10.3390/ani5020151

Potential of Commercial Spice Mixes to Enhance the Quality and to Extend the Shelf Life of Raw Chicken Breasts

Selvina Subbarayan¹, Arvind Ruggoo² and Hudaa Neetoo¹*

¹Department of Agriculture and Food Science, Faculty of Agriculture, University of Mauritius
²Department of Agricultural Production Systems, Faculty of Agriculture, University of Mauritius
*Corresponding author’s Email: s.neetoo@uom.ac.mua

ABSTRACT

Raw chicken harbors spoilage microorganisms such as the Mesophilic Aerobic Bacteria (MAB), Lactic Acid Bacteria (LAB), Spoilage Yeasts (SY) and Pseudomonas, which limit product shelf life. This study compared the potential of three spice mixes (“Tandoori”, “Kalia” and “Massala”) to extend the shelf life of raw chicken. Chicken breasts were marinated with each of the spice mixes (3% w/w), and subsequently refrigerated for up to 15 days. Marinated and non-marinated samples were withdrawn at three-day intervals and analyzed for enumeration of MAB, LAB, SY and Pseudomonas. After three days, chicken marinated with “Tandoori” and “Kalia” spices had a significantly ($P<0.05$) lower load of MAB (5.51–6.06 log cfu/g) compared with untreated control breasts (6.58 log cfu/g) although by Day 15, there were no significant differences ($P>0.05$) observed in the final MAB counts between treated samples (7.51–7.88 log cfu/g) and untreated controls (7.88 log cfu/g). There were also no significant ($P>0.05$) differences in the counts of Pseudomonas (2.65–3.64 log cfu/g), LAB (2.56–4.20 log cfu/g) and SY (2.60–4.15 log cfu/g) over the 15-day storage. Since the onset of microbial spoilage is marked by MAB reaching 7 log cfu/g, the microbiological shelf-life of marinated and non-marinated chicken breasts were estimated at 12 and 6 days respectively. However, based on the sensorial attributes, both marinated and non-marinated chicken received poor acceptability scores after six and three days respectively. Commercial spice mixes can thus extend the refrigerated shelf-life of raw chicken by three days to a maximum of six days.

Keywords: Breast, Chicken, Quality, Shelf-life, Spice Mixes

INTRODUCTION

The consumption of chicken has increased worldwide because it forms a major part of the human diet. Chicken has nutritional characteristics such as low lipid content and a high concentration of polyunsaturated fatty acids (Bourre, 2005). Chicken meat can however perish rapidly if it is not stored, processed, packaged or distributed correctly (EFSA, 2013). Raw meat can either be spoiled by microbial activity or by oxidative processes due to the high content of PUFA and high peroxidation index (Sebranek et al., 2005; Dal Bosco et al., 2016). Spoilage microorganisms associated with meat, especially lactic acid bacteria can cause undesirable changes in meats. Those changes make the chicken unattractive and unfit for human consumption (Gram et al., 2002; Doulgeraki et al., 2012).

Thus food industries worldwide have resorted to the addition of synthetic preservatives to meat products to prevent the uncontrolled growth of spoilage organisms and to increase their shelf life. In recent years, there has been a significant concern over the safety of these chemicals, thereby influencing consumers’ preference for natural products such as spices and plant extracts over chemical preservatives (Govaris et al., 2010).

A spice can be referred to as a seed, fruit, root, bark, berry, bud or vegetable which is used in food to enhance its flavour (aroma and taste), colour or texture as well as to
preserve the product from deterioration. The use of spices is very important in raw or fresh meat because the latter is mostly susceptible to spoilage (Thomas et al., 2012). Many studies have stated that spices have antioxidant properties by the virtue of their phenolic components (Konczak et al., 2010). Spices with known antimicrobial activity, are cloves, cinnamon and oregano as they contain eugenol, cinnamaldehyde and thymol respectively (Wang et al., 2011). Not only do spices delay the onset of microbial spoilage, but also enhance the safety of food by inhibiting the growth of foodborne pathogenic microorganisms (Devatkal and Naveena, 2010). For instance, Radha Krishnan et al. (2014) showed that spices, containing a high amount of phenolic compounds, decrease lipid oxidation and inhibit the growth of microorganisms, thus increasing the shelf life of poultry (Radha Krishnan et al., 2014). There are many studies, which have either investigated the antimicrobial activities of crude forms of spices (Smith-Palmer et al., 1998; Harakudo et al., 2004; Skrinjar and Nemet, 2009; Aggarwal et al., 2015) or the essential oils of spices (Hammer et al., 1999; Dorman and Deans, 2000) against foodborne pathogens and spoilage microorganisms. As the Mauritian cuisine is diverse and is an amalgamation of European, Chinese and Indian cuisines, a wide variety of spices are used as ingredients and seasoning in Mauritian cooking. Moreover, spices are also used as decoctions in Mauritius (Mahomoodyally et al., 2012). However, to our knowledge no studies have been attempted to test the potential of spice mixes, locally available in Mauritius to control the growth of spoilage bacteria in food systems. This study therefore aims at assessing the potential of commercially available spice mixes to enhance the quality and extend the shelf-life of raw chicken breast.

MATERIALS AND METHODS

Sample collection and treatment
A preliminary survey targeting a convenience sample of 50 consumers was conducted in order to identify different spice mixes typically used in households. A questionnaire was designed for that purpose and was administered face to face. The three most frequently used spice mixes identified were “Tandoori”, “Massala” and “Kalía” and chicken breast was identified as the most preferred part of poultry meat used by consumers.

Chicken breasts were bought from a chilled retailed outlet and transported to the laboratory in a cooler bag. The skin was removed and the chicken breasts were cut into cubes, weighing approximately 10g, with dimensions of 2 cm x 2 cm x 2 cm. Chicken samples were then either left untreated (U) or homogenously mixed with “Tandoori” (Tt), “Kalía” (Tk) or “Massala” (Tm) at a final concentration of 3% w/w as determined in the preliminary survey. Samples were subsequently placed in closed plastic containers and were kept at 4°C for up to 15 days.

Microbiological analysis
Marinated and non-marinated samples were withdrawn for microbiological analysis every three days for a period of 15 days. Each sample was aseptically placed in a sterile stomacher bag to which 90 ml of sterile buffered peptone water was added. The mother sample and its dilutions were placed on Plate Count agar medium (OXOID), Pseudomonas agar (OXOID), Lactobacillus MRS agar (OXOID) and Potato Dextrose agar (PDA) for the enumeration of Mesophilic Aerobic Bacterial (MAB) counts, Pseudomonas counts, Lactic acid bacteria (LAB) counts and Spoilage Yeast (SY) counts respectively. The plates for the Pseudomonas counts and Lactic acid bacterial counts were incubated at 37°C for 24±2 h and 37°C for 48±2 h respectively. PDA plates were however incubated at room temperature (ca. 24°C) for five days. All the colonies were then enumerated with a colony counter.

Physicochemical analysis
For determination of pH, treated or untreated chicken samples (10 g) were minced and mixed with 90 ml of distilled water for 30 minutes using a magnetic stirrer. The pH of the mixture was then measured using a digital pH meter (Mettrler Toledo). For the determination of the water activity of samples, a hand-held water activity meter (Novasina, Japan) was used. For the determination of instrumental surface colour (CIE L*a*b), chicken samples were minced and placed in a clean petri dish which was then inverted. Triplicate measurements of surface colour were then taken using a chromameter (Minolta CR-410, Konica Minolta, Japan). Drip loss of chicken samples was also determined by measuring cumulatively the volume of exudate lost after two hours, one day and 15 days through refrigerated storage. To determine drip loss, 10 g of marinated and non-marinated samples were initially weighed and then placed in a sealed ziplock bag and kept in the refrigerator at 4°C. Their weight was then determined immediately (D₀), one day (D₁) and 15 days (D₁₅) through refrigerated storage. All the physicochemical analyses were carried out in three independent replicates and their measurements were taken in triplicates.

Sensory evaluation
Marinated and non-marinated chicken samples were prepared and stored at chilling temperature as described
previously. A sensory evaluation questionnaire was designed and sensory analysis was conducted with 10 untrained panellists at 3-day intervals for a period of 15 days. On each day of the analysis, samples were taken out and rated for different sensory parameters such as colour, aroma, texture and general appearance on a scale of 1-10, where 1 being the least accepted and 10 being most accepted.

Statistical design and analysis

The statistical analyses were conducted using the General Linear Model in MINITAB version 16.0 to determine the differences for the different treatments on the different days of storage. Significant differences were considered at the 95% confidence level (P < 0.05).

Ethical approval

The authors solemnly declare that publication ethics and good conduct were adhered to during preparation, reviewing, processing and proofreading of this article. No ethical clearance was needed to conduct the work.

RESULTS AND DISCUSSION

Consumer use of spices

The most commonly used spice mixes among Mauritians were “Tandoori” (24.0%) followed by “Kalia” (21.9%) and “Massala” (17.7%), as these spices are ingredients used in many traditional Mauritian dishes. As a matter of fact “Tandoori chicken” is one of the favourite dishes of Mauritians and it is of Indian origin (Kioon, 2015). “Chicken Kalia” is considered as one of the most authentic Mauritian recipes and is also widely appreciated by Mauritians (Kioon, 2010). These spice mixes were most preferred by survey participants thanks to the virtue of their unique compositions and flavour. The survey also revealed that the spices were added to chicken at a ratio of approximately 30g to 1 kg of chicken or ca. 3% w/w of chicken.

Microbiological analysis

The MAB counts of chicken samples had increased from an initial population of 5.4 log cfu/g to a maximum of 7.9 log cfu/g over the 15-day refrigerated storage (Table 1).

For samples that were marinated with “Tandoori”, “Kalia” and “Massala” spice mixes, MAB counts were consistently lower than their untreated counterparts by a maximum of 1.0 log cfu/g. The exact mechanism of antibacterial action of spices and derivatives is not yet clear (Lanciotti et al., 2004), although it has been hypothesized that hydrophobic and hydrogen bonding of phenolic compounds to membrane proteins, partitioning of the lipid bilayer (Juven et al., 1994), perturbation of the permeability of bacterial cell membranes (Cox et al., 1998), membrane disruption (Caccioni et al., 2000), destruction of electron transport systems (Tassou et al., 2000) and cell wall perturbation (Odhav et al., 2002) could play a role. MAB counts of samples treated with “Tandoori”, “Kalia” and “Massala” however reached levels of 7.9, 7.6 and 7.7 log cfu/g after 15 days respectively indicating that the spice mixes used in the study had not significantly suppress growth of mesophilic aerobes (P > 0.05). On the other hand, other authors have successfully demonstrated the effectiveness of spices and spice mixes to sustainably control spoilage and pathogen growth in food. Shelef (1983) indicated that high levels of spices inhibited growth of spoilage microorganisms in food such as chicken and fish. Grohs and Kunz (2000) tested the effectiveness of spice mixtures to inhibit the growth of various meat-spoilage microorganisms (Bacillus subtilis, Enterococcus spp., Staphylococcus spp., E. coli K12 and Pseudomonas fluorescens) and to stabilize the colour and smell of fresh-portioned pork meat.

Table 1. Mesophilic aerobic bacterial (MAB) counts (log₁₀ cfu/g) of spice-marinated and non-marinated chicken samples over a 15-day storage period

<table>
<thead>
<tr>
<th>Days</th>
<th>U</th>
<th>Tt</th>
<th>Tk</th>
<th>Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.4±0.2</td>
<td>5.4±0.6</td>
<td>6.0±0.0</td>
<td>5.9±0.1</td>
</tr>
<tr>
<td>3</td>
<td>6.6±1.2</td>
<td>5.5±0.5</td>
<td>6.1±0.1</td>
<td>6.7±0.5</td>
</tr>
<tr>
<td>6</td>
<td>7.2±0.8</td>
<td>6.3±0.9</td>
<td>7.0±0.2</td>
<td>7.0±0.2</td>
</tr>
<tr>
<td>9</td>
<td>7.5±0.8</td>
<td>6.4±0.8</td>
<td>7.1±0.1</td>
<td>7.1±0.2</td>
</tr>
<tr>
<td>12</td>
<td>7.7±1.0</td>
<td>7.3±1.5</td>
<td>7.2±0.1</td>
<td>7.2±0.5</td>
</tr>
<tr>
<td>15</td>
<td>7.9±1.2</td>
<td>7.9±1.2</td>
<td>7.6±0.4</td>
<td>7.7±0.6</td>
</tr>
</tbody>
</table>

U: Untreated, Tt: “Tandoori”, Tk: “Kalia”, Tm: “Massala”; Data represent mean values of three replicates ± standard deviation; Counts within the same row representing the same day of storage were not significantly different (P > 0.05).

Contrary to our findings, the authors showed that these spice mixtures were effective shelf-life extenders. The disparity in our results could be partly attributed to differences in the variety of spices used, the composition of spice mixes tested, the cultivar of spice vegetables and the marination procedure. Indeed, several scientific reports attributed the differences in the inhibitory effect of spices to variation in the resistance of different microorganisms to a given spice and of the same microorganism to different spices (Akgul and Kivanç, 1988). It is also worth mentioning that there is a considerable body of research on the antibacterial effectiveness of essential oils of a wide range of spices against different spoilage and pathogenic bacteria and their results consistently showed that
individual or combinational extracts exhibited strong antibacterial activity (Arora and Kaur, 1999; Elgayyar et al., 2001; Zhang et al., 2015). The high potency of the extracts noted in these studies could be attributed to the fact that they tested aqueous or alcohol-based extracts of spices and herbs. In our study on the other hand, we used commercial spice blends, which were crude mixtures of different dried spice vegetables.

Shelf-life can be defined as the period in which a product remains safe and suitable for consumption. This means that it has not deteriorated in quality or spoiled in any way that the consumer would find it unacceptable (EFIC, 2013). The limit of acceptability or the onset of spoilage of poultry products is usually marked by mesophilic aerobes attaining populations of 7.0 log cfu/g in fresh poultry (Cox et al., 1998). The microbiological shelf-life of non-marinated chicken was thus estimated to be < 6 days while the shelf-life of chicken marinated with “Tandoori” was estimated to be < 12 days. “Kalia” and “Massala” were not as effective shelf-life extenders as “Tandoori” as the chicken products had a shelf-life of < 6 and < 9 days respectively. Similarly Khanjari et al. (2013) and Kuswandi et al. (2014) also observed that the microbiological shelf-life of untreated chicken was ca. 6-7 days at refrigeration temperature. Pseudomonas spp., Lactic acid bacteria and Spoilage yeasts counts on non-marinated chicken increased from an initial density of 2.9, 2.6 and 2.6 log cfu/g to a maximum of 3.2 log cfu/g although the difference between the final and initial density was not significantly different (P > 0.05) (Table 2).

Table 2. The initial and final population density of Pseudomonas spp., Lactic acid bacteria (LAB) and Spoilage Yeasts (SY) (log cfu/g) of spice-marinated and non-marinated chicken

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Days</th>
<th>U</th>
<th>Tt</th>
<th>Tk</th>
<th>Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo.</td>
<td>0</td>
<td>2.9±0.0</td>
<td>2.6±0.8</td>
<td>2.7±0.1</td>
<td>2.8±0.2</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.2±0.1</td>
<td>3.0±0.1</td>
<td>3.0±0.0</td>
<td>2.9±0.0</td>
</tr>
<tr>
<td>LAB</td>
<td>0</td>
<td>2.6±0.1</td>
<td>2.6±0.0</td>
<td>2.6±0.7</td>
<td>2.7±0.6</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.2±0.1</td>
<td>3.1±0.4</td>
<td>4.2±0.6</td>
<td>4.2±0.6</td>
</tr>
<tr>
<td>SY</td>
<td>0</td>
<td>2.6±0.0</td>
<td>2.4±0.9</td>
<td>3.0±0.5</td>
<td>2.9±0.2</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.2±0.5</td>
<td>3.8±1.1</td>
<td>4.0±0.7</td>
<td>4.2±0.6</td>
</tr>
</tbody>
</table>

U: Untreated. Tt: “Tandoori”. Tk: “Kalia”. Tm: “Massala”. Data represent mean values of three replicates ± standard deviation. Counts within the same row representing the same day of storage were not significantly different (P > 0.05).

For chicken marinated with one of the different spice mixes, Pseudomonas spp. had increased to a maximum of 3.0 log cfu/g although these final counts were not significantly different from the final densities of their untreated counterparts (P > 0.05). The Pseudomonas species isolated from poultry could likely be P. fluorescens, P. putida or P. fragi (Russell, 2009). Pseudomonas spp. has generally been considered to be the predominant Specific Spoilage Organism (SSO) in poultry (Barnes and Impey, 1968; Cerveny et al., 2009). SSO is defined as the part of the total microbiota responsible for spoilage of a given product within the spoilage domain, which is the range of product characteristics and storage conditions within which a given SSO causes product rejection (Dalgard, 1995). In fact, Davies and Board (1998) indicated that Pseudomonas spp. made up approximately 85% of the entire bacterial population on poultry refrigerated for about two weeks and fluorescent and non-pigmented strains of Pseudomonas spp were mostly found in spoiled chicken. Jay et al. (2007) and Rukhcon et al. (2014) also mentioned that the primary spoilage organism in chicken kept at low temperature reportedly belongs to the genus Pseudomonas. However, in the current study, Pseudomonas spp. did not appear to be the predominant spoilage bacteria as it had increased only by 0.35 log cfu/g compared to other bacterial species. It is possible that other microbial species that were not enumerated in this study could have been responsible for product spoilage since there are over 25 bacterial genera that make up the microbiota of poultry (Lahellec et al., 1975). Lahellec et al. (1975) indicated that in a study of 5920 isolates from chicken carcasses, pseudomonads were found to constitute only 30.5% of the microbial biota while the rest consisted of Acinetobacter, Flavobacterium and Corynebacterium in relative abundances of 22.7%, 13.9% and 12.7% respectively and yeasts and Enterobacteriaceae in relatively lower in numbers.

The counts of LAB in marinated samples ranged from 3.1 - 4.2 log cfu/g, compared with 3.2 log cfu/g in the non-marinated chicken although these final counts were not significantly different from the final densities of their untreated counterparts (P > 0.05). The higher population of LAB noted in samples marinated with “Kalia” and “Massala” could be attributed to the lower pH of these spice mixes. Both of these spices have chili powder in varying proportions (Cuizinemaurice, 2014), and chili powder is known to have a low pH of 4.4 (Peter and Babu, 2012). Adding these spices to chicken is likely to lower the pH and favour the growth of acidophilic and acid-tolerant microorganisms such as lactic acid bacteria (Hutkins, 1993; 2009). This could partly explain the higher population density attained by LAB in marinated chicken over non-marinated chicken. Moreover, lactic acid bacteria are spoilage microorganisms that can occur in spices such as onion and garlic powder, and these ingredients are present in varying proportions in “Kalia” spice mix (Cuizinemaurice, 2014). Davies and Board (1998) reported that even moderate levels of lactic acid bacteria in poultry can in fact result in the release of off-flavours and deterioration of the colour of chicken (Franz
et al., 2010). Hence selecting spices having low counts of lactic acid bacteria, particularly the hetero-fermentative variety, is important for manufacturing of products with an extended shelf-life (Sperber, 2007).

Although spoilage of poultry meat has been largely attributed to bacteria (Corry, 2007), yeasts can also be present in the microbiota. Russell (2009) mentioned that fungi are usually of less importance in poultry spoilage except when antibiotics are employed to suppress bacterial growth. In fact, yeasts have been reported to attain population density as high as 10^6 cfu/g on fresh chicken carcasses during storage (Hinton et al., 2002). In our study, we observed that spoilage yeasts proliferated to a greater extent in spice-marinated chicken (3.8-4.2 log cfu/g) than in the none-marinated samples (3.2 log cfu/g) although these differences were not significant (P > 0.05). The higher counts of yeast organisms on marinated chicken noted in our study could be because of the presence of indigenous microorganisms already present in these commercial spice blends. Indeed, spices and their plants can be contaminated with microorganisms during cultivation, processing and packaging (Ito et al., 2008). In addition, we also observed that the addition of spices depressed the water activity of chicken meat by a maximum of 0.23 (Table 4) thus potentially encouraging the growth of spoilage yeasts compared to bacteria (Beuchat, 1983). The yeast isolates could likely belong to the genus Candida, Rhodotorula, Debaryomyces or Yarrowia, as these are predominant yeasts in poultry (Jay et al., 2007). Viljoen et al. (1998) also indicated that Candida and Debaryomyces were the two most dominant genera of yeasts on both fresh and spoiled carcasses although Rhodotorula was not found on any spoiled carcasses. Ismail et al. (2000) further mentioned that the two most abundant species of Candida and Debaryomyces were C. zeylanoides and D. hansenii on fresh and spoiled poultry.

Table 3. pH of spice-marinated and non-marinated chicken

<table>
<thead>
<tr>
<th>Days</th>
<th>U</th>
<th>Tt</th>
<th>Tk</th>
<th>Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10.00 ± 0.41<sup>Aa</sup></td>
<td>6.51 ± 0.21<sup>Ac</sup></td>
<td>7.18 ± 0.05<sup>Ab</sup></td>
<td>7.24 ± 0.13<sup>Ab</sup></td>
</tr>
<tr>
<td>15</td>
<td>7.86 ± 0.18<sup>Ba</sup></td>
<td>7.60 ± 0.33<sup>Aa</sup></td>
<td>7.09 ± 0.14<sup>Ab</sup></td>
<td>6.88 ± 0.17<sup>Ab</sup></td>
</tr>
</tbody>
</table>

U: Untreated; Tt: “Tandoori”; Tk: “Kalia”; Tm: “Massala”; Data represent mean values of three replicates ± standard deviation. Means within a column with different uppercase superscripts differ significantly (P < 0.05); Means within each row with different lowercase superscripts differ significantly (P < 0.05).

Table 4. Water activity of spice-marinated and non-marinated chicken

<table>
<thead>
<tr>
<th>Days</th>
<th>U</th>
<th>Tt</th>
<th>Tk</th>
<th>Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.843 ± 0.023<sup>Aa</sup></td>
<td>0.687 ± 0.043<sup>Ab</sup></td>
<td>0.800 ± 0.017<sup>Aa</sup></td>
<td>0.540 ± 0.013<sup>Ac</sup></td>
</tr>
<tr>
<td>15</td>
<td>0.773 ± 0.020<sup>Ba</sup></td>
<td>0.613 ± 0.036<sup>Ab</sup></td>
<td>0.570 ± 0.027<sup>Ab</sup></td>
<td>0.387 ± 0.047<sup>Ac</sup></td>
</tr>
</tbody>
</table>

U: Untreated; Tt: “Tandoori”; Tk: “Kalia”; Tm: “Massala”; Data represent mean values of three replicates ± standard deviation. Means within a column with different uppercase superscripts differ significantly (P < 0.05); Means within each row with different lowercase superscripts differ significantly (P < 0.05).
The decrease in the water activity of treated samples over the storage duration could be due to the steady loss of free water by osmosis due to the osmotic pressure exerted by the spice marinades (Gurtler et al., 2014). Moreover, since the spice mixes used in the study have an inherently low water activity of ca. 0.3 (Peter and Babu, 2012), their use in the marinating of chicken could have depressed the water activity of the chicken meat by simple osmosis, or dehydration. When spices are applied to high moisture food products such as raw chicken, the dry spices attempt to reach equilibrium with the food product with which it is in contact by drawing available water from within the flesh to the outside while the spices try to permeate into the food interior (Parish, 2017). The result is a reduction in the water activity (aₜ) of the chicken products. Since the minimum threshold to support the growth of spoilage fungi (0.80) is lower than the threshold for bacteria (0.93), the marinated chicken products could more likely support the growth of spoilage yeasts over spoilage bacteria as already indicated above. After 15 days of refrigerated storage, the aₜ of untreated chicken had decreased from 0.93 to 0.86 and this is likely due to considerable drip loss reaching as high as 20.1% (Table 6). From our observations, we could infer that drip loss is inversely related with water activity; the higher the drip loss, the lower the water activity of the chicken product. On the other hand, Oliveira et al. (2015) noted that different thawing treatments of chicken breasts resulted in different degrees of drip loss with no effect on the aₜ.

Surface colour characteristics of chicken samples

The lightness (L*) values of untreated samples had decreased from 54.3 to 51.3 over the 15-day refrigerated period (Table 5). Galobart and Moran (2004) similarly observed that L* values for refrigerated poultry fillets decreased following 48-h of storage and attributed it to the considerable drip loss. Indeed, we also observed a maximum drip loss of 13.9 and 20.1 % in untreated samples after 1 and 15 days of refrigerated storage (Table 6). Galobart and Moran (2004) also mentioned that further decreases in L* values during prolonged storage could relate to meat drying and shrinkage. In fact, we also observed that longer storage of up to 15-days resulted in concomitantly lower L* values (51.3), higher drip loss (20.9%) and lower water activity (0.77) compared to the initial L* values (54.3), drip loss (0.6%) and lower water activity (0.84) of untreated samples. Indeed, the extensive drip loss after 15 days was observed in the form of white exudation from the chicken meat.

The L* values for marinated chicken were lower than their untreated counterparts and ranged from 40.9 to 46.9 on the day of application. Indeed, untreated chicken initially appeared pale pink and translucent while the marinated chicken exhibited the colour of the added spices i.e. appeared reddish, brownish or yellowish with the addition of the “Tandoori”, “Kalia” and “Massala” spice mixes respectively.

Table 5. Comparison of the initial and final surface colour characteristics of spice-marinated and non-marinated chicken during a 15-day storage period

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Days of storage</th>
<th>Colour parameters</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0</td>
<td></td>
<td>54.3±2.13</td>
<td>9.3±1.01</td>
<td>6.1±0.68</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>51.3±3.68</td>
<td>9.6±1.62</td>
<td>7.8±0.89</td>
</tr>
<tr>
<td>Tt</td>
<td>0</td>
<td></td>
<td>44.1±1.80</td>
<td>13.6±2.19</td>
<td>4.3±0.98</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>41.6±1.70</td>
<td>7.8±0.75</td>
<td>9.9±0.88</td>
</tr>
<tr>
<td>Tk</td>
<td>0</td>
<td></td>
<td>43.7±1.43</td>
<td>5.1±0.53</td>
<td>19.1±1.29</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>42.9±1.74</td>
<td>6.6±1.09</td>
<td>18.1±0.88</td>
</tr>
<tr>
<td>Tm</td>
<td>0</td>
<td></td>
<td>46.9±1.39</td>
<td>6.9±0.17</td>
<td>24.7±1.20</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>45.6±1.91</td>
<td>7.8±1.07</td>
<td>24.6±2.91</td>
</tr>
</tbody>
</table>

U: Untreated, Tt: “Tandoori”, Tk: “Kalia”, Tm: “Massala”; L*: Lightness, a*: Redness, b*: Yellowness; Data represent mean values ± standard deviation

As expected, the redness (a*) value for samples marinated with Tandoori (13.6) was higher than either untreated (9.3), Kalia (5.1) or Massala (6.9) marinated samples since tandoori spices are red in colour due to the presence of sweet paprika (Cuizinemaurici, 2014) and occasionally due to the presence of synthetic dye E124 also known as cochineal red (EFSA, 2015). Sweet paprika has a characteristic red colour due to the presence of red-pigmented carotenoids such as capsanthin, capsorubin, zeaxanthin and cryptoxanthin (Zachariah and Gobinath, 2008). However, the redness (a*) of chicken marinated with Tandoori had decreased after 15 days reaching a final mean value of 7.8. The reason for this downshift may be due to the loss of oxy-myoglobin in the meat as well as compositional changes undergone in the Tandoori spice mix (Khan et al., 2015).

The initial b* values were highest in chicken treated with Massala (24.7) and Kalia (19.1), compared to either untreated (6.1) or Tandoori (4.3) chicken, due to the different shades of yellowness of the two spice mixes. Indeed, Massala and Kalia spice mixes both comprise of different proportions of turmeric, which is also known as the “yellow root”. After 15 days, chicken marinated with Massala or Kalia still had a persistent yellow colour with b* values of 24.6 and 18.1 respectively. Untreated and tandoori-marinated chicken had slightly higher b* values of 7.80 and 9.94 respectively probably due to acquisition of a slightly brownish colour. Colour changes undergone during storage of poultry arise when by-products generated during lipid oxidation interact with the myoglobin pigment (Khan et al., 2015).
Drip loss

Water within meat exists inbound, immobilized or free forms. Bound water molecules associate with electrically charged reactive groups of muscle proteins (Montgomery, 2007), while immobilized water molecules are attracted to the bound molecules in layers that become successively weaker as the distance from the reactive group on the protein becomes greater (Mills et al., 1989). Free water refers to water molecules that are only held by weak forces (Montgomery, 2007). Drip loss can be determined by quantifying the amount of free water lost in raw chicken meat, cooked whole meat or cooked comminuted meat products (Hertogs-Meischke et al., 1997; Lawrence et al., 2003; Otto et al., 2006) and usually gives an indication of the juiciness (Montgomery, 2007). In this study, drip loss of 7.8-16.7% was observed after one day of refrigerated storage for marinated and non-marinated samples (Table 6). Indeed, drip loss can be expressed as milligrams per gram (mg/g) of sample or as a percentage (Montgomery, 2007). However, after 15 days of refrigerated storage, the cumulative % drip loss attained 17.6-30.2% probably due to extensive exudation by osmosis.

<table>
<thead>
<tr>
<th>Days of storage</th>
<th>U</th>
<th>Tt</th>
<th>Tk</th>
<th>Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>13.9</td>
<td>10.1</td>
<td>16.7</td>
<td>7.8</td>
</tr>
<tr>
<td>15</td>
<td>20.1</td>
<td>19.9</td>
<td>30.2</td>
<td>17.6</td>
</tr>
</tbody>
</table>

Extensive drip loss could also probably explain the lowering of the water activity of treated samples from 0.91 to 0.65 and untreated samples from 0.93 to 0.86. Another reason for the increase in the drip water loss is that immediately after refrigeration, the surface of the chicken becomes colder than inside the cell and hence the rate of moisture loss increases, leading to a surge in the loss of water (Garcia et al., 2010). Qiao et al. (2002) studied the effect of marinating on drip loss and colour of broiler breast fillet. A marinade made of water (92.5%), salt (5%), and phosphates (2.5%) was applied for 24 h. Results showed considerable variation in drip loss, pH and meat colour. Drip loss of raw chicken fillets was positively correlated with lightness of raw fillets while water-holding capacity was negatively correlated with lightness (Qiao et al., 2002). Montgomery (2007) mentioned that the pH can greatly affect moisture binding in meat. However, in our study, we did not observe any clear-cut association between pH of samples and extent of drip loss.

Sensory evaluation

The four sensory attributes, which generally influence consumers’ decision to purchase fresh chicken meat, are colour, juiciness, flavour and texture/tenderness. Both marinated and control samples had a pleasant texture and appearance on the initial day of storage with ≥ 90% of the panelists indicating moderately high to very high acceptance of the products. After three days of storage, treated and untreated samples were equally well received by the panelists with more than 90% showing moderately high to very high acceptance. This observation is very much congruent with findings of Radha Krishnan et al. (2014) who also showed that the sensorial quality of chicken breasts left untreated or treated with spice extracts fared well in all three attributes up to three days of storage. However, the sensory quality of all samples began to deteriorate after six days of refrigerated storage with more than 70% of the panelists indicating low to no acceptance of the products tested. In fact, after six days of storage, none of the samples were accepted due to their odour, texture and appearance as all of them released very pungent putrid odours and had a sticky appearance. This finding is in agreement with that of Radha Krishnan et al. (2014) who also demonstrated a lower acceptability score for control samples after 6 days. However, contrary to our findings, Radha Krishnan et al. (2014) indicated that the sensory attributes of samples treated with spices only deteriorated significantly after 12 days of storage as opposed to 6 days noted in our study. After 15 days, we observed that all samples appeared sticky and slimy. In fact, the slime layer was the result of individual white colonies forming on the spoiled breast fillet that eventually coalesce to form a biofilm (Russell, 2009). Kong et al. (2007) observed that pork marinated with spices started to produce off-odours characteristic of putrefaction after seven days of storage and more pronounced discoloration was observed on the 14th day for both control and treated pork. Kong et al. (2007) attributed the off-odors to lipid oxidation and ammonia production from breakdown of proteins. Russell (2009) on the other hand mentioned that off-odors do not result from breakdown of the proteins in skin and muscle, rather are released from the direct microbial utilization of low molecular weight nitrogenous compounds such as amino acids, which are present in skin and muscle. Among off-odor producers in general, there is a selection of bacterial species that forms part of the microbiota of fresh poultry (Thomas et al., 1987; Erkmen and Bozoglu, 2016). These include psychrotrophic bacteria such as *Pseudomonas* spp., *Acinetobacter*, *Moraxella* and *Shewanella putrefaciens* (Thomas et al., 1987). *S. putrefaciens* isolates tend to produce sulphide-like odours as this organism is known to produce hydrogen sulphide,
methyl mercaptan and dimethyl sulphide (Thomas et al., 1987). As Ayres et al. (1950) indicated, the release of off-odors generally precedes the development of sliminess, with the former being first detected when the population reaches about 7.2-8.0 log cfu/g or log cfu/cm². Indeed, we also observed significant slime formation after 15 days coinciding with aerobic plate counts reaching 7.9 log cfu/g. Slime formation is an evidence of superficial spoilage that tends to occur because the inner portions of poultry tissue are generally sterile or contain relatively few organisms. The spoilage biota, therefore, is restricted to the surfaces (Tellez et al., 2013) and grows in an environment of high humidity such as in the refrigerator.

CONCLUSION

The spice mixes “Tandoori”, “Kalía”, and “Massala” are frequently used in Mauritius for marination of chicken. The spice mixes variably inhibited the growth of mesophilic aerobic bacteria achieving a maximum reduction of 1.0 log cfu/g, relative to untreated controls. Since a population density of TVC exceeding 7 log cfu/g indicates the onset of spoilage, Tandoori and Massala were found to extend the microbiological shelf-life of the product by 6 and 3 days respectively. However, addition of the commercial spice mixes did not improve the sensory attributes of marinated chicken over their untreated counterparts and the sensory shelf-life of both treated and untreated chicken breasts were < 6 days due to significantly reduced acceptability scores.

Acknowledgements

The authors wish to thank Mrs Zaynab Joomun-Baboorally for technical assistance in the project.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

SS made substantial contributions to conception of the study, acquisition, analysis and interpretation of data and writing-up of the first draft of the manuscript. AR contributed in the design of experiments and reviewing of the manuscript. HN was involved in critically reviewing, revising and formatting the manuscript. HN and AR have given final approval of the version to be published.

REFERENCES

Hutkins RW and Nannen NL (2009). pH homeostasis in Lactic Acid Bacteria. Faculty publications in Food Science and Technology. p. 28. DOI: https://doi.org/10.3168/jds.s0022-0302(93)77573-6

Efficacy of Combined Vaccine against Salmonellosis and Infectious Coryza in Poultry

Ibrahim, H.M. 1*, Wafaa, R. Abd El-Aziz 1, Halaa, El Sawy 1, Sayed, R.H. 2 and Gina, M. Mohammed 2

1 Veterinary Serum and Vaccine Research Institute (VSVRI), Abbasia, Cairo, Egypt.
2 Central Laboratory for Evaluation for Veterinary Biologics (CLEVB), Abbasia, Cairo, Egypt.

Received: 06 Aug 2017
Accepted: 11 Sept 2017

ABSTRACT
In the present study, efficacy of two prepared combined vaccines against salmonellosis and infectious coryza in poultry has been studied. Two vaccines were prepared using Salmonella Typhimurium and Enteritidis combined with Avibacterium paragallinarum serovars A, B, and C. One vaccine was adjuvanted with aluminium hydroxide gel and the other adjuvanted with montanide ISA71. The two vaccines were assayed in six weeks old Specific Pathogen Free (SPF) white Lohman layer chickens by injecting two doses of each vaccine 3 weeks apart. These chickens were challenged with either Salmonella virulent strains or Avibacterium paragallinarum different serovars 3 weeks post second dose. Antibody titers in sera of chickens against different antigens were higher in groups vaccinated with montanide oil vaccine than those vaccinated with aluminium hydroxide gel vaccine as detected by different serological tests; ELISA, micro-agglutination test and haemagglutination inhibition test. Protection rate against challenge test were 80% and 85% for Salmonella and (80%; 90%, and 70%) and (90%; 100%, and 90%) to Avibacterium paragallinarum serovars A, B, and C respectively for combined vaccine adjuvanted by aluminum hydroxide gel and montanide ISA71. The protection rate was 15% against Salmonella Typhimurium and Enteritidis and 0% against infectious coryza among the unvaccinated chicken group. It could be concluded that producing a vaccine from locally isolated Salmonella and Avibacterium (Haemophilus) paragallinarum strains adjuvanted with montanide ISA71 is recommended to aid in controlling avian salmonellosis and Infectious coryza at the same time.

Key words: Aluminum hydroxide gel, Chicken, Infectious coryza, Salmonellosis, Vaccine.

INTRODUCTION
Salmonella is a persistent pathogen in the environment, able to easily survive and proliferate. The most commonly isolated serovars worldwide from various animal sources continue to be Salmonella Enteritidis and Salmonella Typhimurium which, besides producing gastroenteritis, are found in asymptomatic carriers in a wide variety of animal species. Of these, Salmonella Enteritidis is the most prevalent one followed by Salmonella Typhimurium (52.3% and 23.3% of the cases, respectively) (López-Martín et al., 2016). Salmonella has remained to be one of the most frequently detected causative agents in the food-borne outbreaks reported (26.6% of outbreaks). Eggs and egg products are frequently associated with Salmonella outbreaks. Salmonella Enteritidis and to a lesser extent, Salmonella Typhimurium are associated with egg-related outbreaks (EFSA, 2004).

Avian Infectious Coryza is a serious respiratory tract infection of domestic fowls caused by an opportunistic pathogen Avibacterium paragallinarum having an economic implication on the poultry industry and ornamental bird’s population (Priya et al., 2012).

Infectious Coryza is a contagious bacterial disease of poultry; it is a common bacterial disease in the commercial poultry (Gayatri et al., 2010). It mainly affects the upper respiratory tract of chickens. The meat of the affected chicken is condemned if it is infected with A. _paragallinarum_ (Blackall et al., 2005).

Combined vaccines have the advantage of protection against more than one disease at the same time, besides, reducing vaccination expenses, decreasing the stress of vaccination for different vaccines, number of vaccination performed and saving time. So this study evaluates the efficacy of a prepared combined vaccine against salmonellosis and infectious coryza using two different adjuvants; aluminium hydroxide gel and montanide ISA 71.

MATERIALS AND METHODS

Bacterial strains

Salmonella Typhimurium and *Salmonella Enteritidis*

These two strains are local field isolates kindly obtained from Department of Bacterial Sera and Antigens, Veterinary Serum and Vaccine Research Institute (VSVRI), Abbasia, Cairo, Egypt. These strains were used for preparation of vaccines under test.

Aivibacterium paragallinarum

The reference strains *Aivibacterium paragallinarum* strain W (serovar A-1) and Modesto strain (serovar C-2) were obtained from MSD Animal Health/Intervet International bv., Boxmeer, The Netherlands; and reference strain 0222 (serovar B-1) was obtained from Dr. R.B. Rimler, USDA National. Animal Disease Center, Ames, Iowa, USA. Local field strain (A) has been originally isolated by Anaerobic Vaccines Research Department, VSVRI from an outbreak of Infectious Coryza in a laying flock in Egypt, confirmed using species level and serotype using serological tests with standard antisera against reference serovars.

Experimental birds

SPF one day old chicks. Forty chicks were used for safety testing of the prepared vaccines.

SPF white Lohman layer chickens. A total number of 150, six weeks old SPF white Lohman layer chickens were obtained from SPF Farm at Koom Osheem Fayoum province, Egypt. They were housed in batteries with the network floor. All birds were ascertained first to be free from *Salmonella* and coryza (organism and antibodies). They were fed on free balanced rations, and used for evaluation of prepared vaccines.

Vaccine preparation

Two combined vaccines were prepared according to Blackall et al. (1992) and Charles et al. (1994). Briefly, ST and SE were cultured on specific media. Equal volumes of each culture (adjusted to contain 1×10⁶ CFU/ml) were mixed together and inactivated by adding 0.5% Formalin. Also cultures of *Avibacterium paragallinarum* serovars A, B and C were prepared (adjusted to contain 1×10⁶ CFU/ml) and equal volume of each serotype were mixed and inactivated by adding 0.5% Formalin and 0.01% (w/v) of thimerosal was added as a preservative agent. Then the above cultures were combined together and divided into 2 parts; one part adjuvanated with 20% (v/v) aluminium hydroxide gel and the other part with Montanide ISA-71 (30:70 v/v).

Experimental design

A total of 150, six weeks old SPF white Lohman layer chickens were divided into three groups 50 chicks per each. Group 1 contained fifty chickens were vaccinated with the prepared combined aluminium hydroxide gel vaccine in a dose of 0.5 ml S/C. Group 2 contained fifty chickens were vaccinated with the prepared combined montanide ISA71 vaccine with dose of 0.5 ml S/C. Group 3 contained fifty chickens injected 0.5 ml S/C with normal saline, left as a control group.

Birds in group (1) and group (2) were boostered with the same vaccine (by the same route and dose) 3 weeks after first immunization. Serum samples were obtained regularly before immunization, weekly for 3 weeks after the 1st vaccination and every 2 weeks post boostering for 22 weeks. Then pooled and stored at -20 °C till used for following up the induced antibodies.

Quality control testing of the prepared experimental vaccines

Sterility test. The prepared vaccines were tested to be free from any external contaminant (aerobic and anaerobic bacteria, fungus and mycoplasma) according to OIE (2016).

Safety test. Safety of the prepared vaccines was monitored through the injection of a double field dose (1 ml) of the vaccine subcutaneously in each of 20 one day old SPF chicks. The chicks were observed daily for two weeks for any signs of local reactions, clinical signs or deaths.

Determination of immune response to the prepared vaccines Serological evaluation of humeral immune response of the vaccinated chickens against Salmonella Typhimurium and Salmonella Enteritidis
Micro-agglutination test (MAT)
Antibody titer in vaccinated and unvaccinated chickens was followed up on regular intervals post vaccination applying Micro-agglutination test (MAT) using sonicated antigen, according to the method described by Thaxton et al. (1970) and Brown et al. (1981).

ELISA
The developed humoral immune response against ST and SE in the vaccinated chickens was measured by ELISA in the sera using Salmonella antibody test kit (BioChek Poultry Immuunoassays cat # CK117 for S. enteritidis and CK118 for S. typhimurium) according to Haider et al. (2007). Calculation of the antibody titers in ELISA were performed in relation to S/P ratio according to the following formulae:

\[
\frac{\text{Sample mean} - \text{Negative control}}{\text{Positive control} - \text{Negative control}} \times +3.156.
\]

Antibody titer = AntiLog

Serological evaluation of humoral immune response of the vaccinated chickens against Avibacterium paragallinarum serovars A, B, and C

Haemagglutination inhibition test
Antibody response in vaccinated and unvaccinated chickens was followed up on regular intervals post vaccination applying Haemagglutination Inhibition (HI) test using sonicated antigen, according to the method described by Blackall et al. (1990).

Enzyme-Linked Immunosorbent Assay (ELISA)
It was done according to Ryuichi et al. (2012) for Avibacterium paragallinarum serovars (A, B, and C). Optical Density (OD) was measured at 490 nm by using a micro plate reader (DYANA Tech., USA). The S/P ratio was calculated and expressed as ELISA titer.

\[
\frac{\text{Sample mean} - \text{Negative control}}{\text{Positive control} - \text{Negative control}} \times +3.156.
\]

Efficacy test (Challenge)

Challenge by Avibacterium paragallinarum serovars A, B and C
All challenge was done by intra sinus inoculation with 0.1 ml overnight broth culture of Avibacterium paragallinarum serovars A, B and C challenge dose containing 1x10^6 CFU/ml. Clinical signs of Infectious Coryza were recorded from day-1 to day-7 after inoculation. The presences of any nasal discharge and facial edema in challenged chickens were recorded. A protected chicken was defined as a chicken that had shown no clinical signs.

Challenge by Salmonella Typhimurium and Salmonella Enteritidis strains
Via administering the vaccinated chickens 3 weeks post boostering dose by a dose of 1 ml virulent ST and SE broth culture containing 1x10^8 CFU/ml (OIE, 2016).

Fecal shedding
Shedding of Salmonella was detected in the fecal samples collected from challenged vaccinated and non-vaccinated chicks up to 4 weeks post challenge.

Statistical analysis
The level of protection present in the vaccinated groups were analyzed and compared with parametrical correlation using Student’s T test (significant difference at P < 0.05) (Snedecor and Cochran, 1980).

Ethical approval
All animal procedures were approved by the Animal Ethics Committee at Veterinary Serum and Vaccine Research Institute (VSVRI), Abbasia, Cairo, Egypt.

RESULTS

Safety and sterility of prepared vaccines
Both of two vaccines were found to be safe and sterile.

Humeral immune response of the vaccinated chickens against Salmonella Typhimurium and Salmonella Enteritidis

Table 1 and 2 illustrated results of MAT and ELISA which are parallel to each other as the antibody titers started rising 2 weeks post first vaccination and reached peak sixth week post boostering. It was clear that MAT and ELISA titer for combined montanide ISA 71 vaccine was higher or double the titer of combined aluminium hydroxide gel vaccine for both antigens. The obtained results shown in tables 1 and 2 were analyzed statistically using Student’s T test and it was found that there is a significant difference at P < 0.05 between group 2 (vaccinated with combined montanide ISA71 vaccine) and group 1 (vaccinated with combined aluminium hydroxide gel vaccine).

Humeral immune response of the vaccinated chickens against Avibacterium paragallinarum serovars A, B, and C
Results of Haem-agglutination Inhibition (HI) test and ELISA as shown in table 3 and 4 were in accordance to those of Salmonella organisms of both vaccines. As antibody titers start raising two weeks post first vaccination and reached peak six weeks post boostering. The obtained results in tables (3 and 4) were analyzed statistically using Student’s T test and it was found that
there is a significant difference at $P \geq 0.05$ between group 2 (vaccinated with combined montanide ISA71 vaccine) and group 1 (vaccinated with combined aluminium hydroxide gel vaccine).

Concerning ELISA titers for *Avibacterium paragallinarum* serovars (A and C) in both vaccines as shown in Table 4, we paralleled with that of HI, also there was a statistically significant difference in ELISA titer between both vaccines.

Table 1. Measurement of antibody against *Salmonella Typhimurium* and *Enteritidis* in sera of vaccinated and unvaccinated layer chickens using microagglutination test.

<table>
<thead>
<tr>
<th>Weeks post vaccination</th>
<th>Group (1)</th>
<th>Group (2)*</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serovar Typhimurium</td>
<td>Serovar Enteritidis</td>
<td>Serovar Typhimurium</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2WPV</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>3WPV</td>
<td>40</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>Boostering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 WPB</td>
<td>80</td>
<td>80</td>
<td>160</td>
</tr>
<tr>
<td>4WPB</td>
<td>160</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>6WPB</td>
<td>320</td>
<td>320</td>
<td>640</td>
</tr>
<tr>
<td>8WPB</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>10WPB</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>12WPB</td>
<td>160</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>14WPB</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>16WPB</td>
<td>80</td>
<td>80</td>
<td>160</td>
</tr>
<tr>
<td>18WPB</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>20WPB</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>22WPB</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Group (1): SPF layer chickens vaccinated with combined aluminium hydroxide gel vaccine; Group (2): SPF layer chickens vaccinated with combined montanide ISA71 vaccine; Control: Unvaccinated group; WPV: Weeks post vaccination; WPB: Weeks post boosting; WPC: weeks post challenge; * Significant at $P < 0.05$; The antibody titer in MAT was expressed as Geometric Mean Titer (GMT)

Table 2. Measurement of antibody against *Salmonella Typhimurium* and *Enteritidis* in sera of vaccinated and unvaccinated layer chickens using ELISA.

<table>
<thead>
<tr>
<th>Weeks post vaccination</th>
<th>Group (1)</th>
<th>Group (2)*</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serovar Typhimurium</td>
<td>Serovar Enteritidis</td>
<td>Serovar Typhimurium</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2WPV</td>
<td>93</td>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td>3WPV</td>
<td>1453</td>
<td>1413</td>
<td>2553</td>
</tr>
<tr>
<td>Boostering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2WPB</td>
<td>2189</td>
<td>2189</td>
<td>3517</td>
</tr>
<tr>
<td>4WPB</td>
<td>2344</td>
<td>2544</td>
<td>3782</td>
</tr>
<tr>
<td>6WPB</td>
<td>2763</td>
<td>2791</td>
<td>4543</td>
</tr>
<tr>
<td>8WPV</td>
<td>2675</td>
<td>2547</td>
<td>3925</td>
</tr>
<tr>
<td>10WPB</td>
<td>2320</td>
<td>2250</td>
<td>3845</td>
</tr>
<tr>
<td>12WPB</td>
<td>2230</td>
<td>2130</td>
<td>3667</td>
</tr>
<tr>
<td>14WPB</td>
<td>1970</td>
<td>1940</td>
<td>3253</td>
</tr>
<tr>
<td>16WPB</td>
<td>1515</td>
<td>1465</td>
<td>2180</td>
</tr>
<tr>
<td>18WPB</td>
<td>1325</td>
<td>1298</td>
<td>2020</td>
</tr>
<tr>
<td>20WPB</td>
<td>1250</td>
<td>1110</td>
<td>1890</td>
</tr>
<tr>
<td>22WPB</td>
<td>1140</td>
<td>1020</td>
<td>1680</td>
</tr>
</tbody>
</table>

Group (1): SPF layer chickens vaccinated with combined aluminium hydroxide gel vaccine; Group (2): SPF layer chickens vaccinated with combined montanide ISA71 vaccine; Control: Unvaccinated group; WPV: Weeks post vaccination; WPB: Weeks post boosting; WPC: weeks post challenge; * Significant at $P < 0.05$
Table 3. Geometric mean of Haemagglutinating Titer against *Avibacterium paragallinarum* serovars A and C in sera of vaccinated layer chickens.

<table>
<thead>
<tr>
<th>Weeks post vaccination</th>
<th>Group (1)</th>
<th>Group (2)*</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serovar A</td>
<td>Serovar C</td>
<td>Serovar A</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2WPV</td>
<td>40.32</td>
<td>40.31</td>
<td>28.50</td>
</tr>
<tr>
<td>3 WPV</td>
<td>40.23</td>
<td>40.31</td>
<td>35.78</td>
</tr>
</tbody>
</table>

Boostering

	2WPB	40.8	57.01	57.01	80.63	0
	4WPB	50.79	57.01	71.83	90.50	0
	6WPB	57.01	71.83	101.59	114.04	0
	8WPB	57.01	71.83	101.59	114.04	0
	10WPB	57.01	71.83	101.59	114.04	0
	12WPB	50.79	71.83	101.59	114.04	0
	14WPB	40.34	71.83	101.59	114.04	0
	16WPB	40.87	50.79	90.50	101.59	0
	18WPB	35.91	50.79	80.63	90.50	0
	20WPB	28.50	40.31	80.63	90.50	0
	22WPB	28.50	40.31	80.63	90.50	0

Group (1): SPF layer chickens vaccinated with combined aluminium hydroxide gel vaccine; Group (2): SPF layer chickens vaccinated with combined montanide ISA71 vaccine; Control: Unvaccinated group; WPV: Weeks Post Vaccination; WPB: Weeks Post Boostering; *Significant at P < 0.05

Table 4. ELISA results (S/P ratio) of vaccinated and unvaccinated layer chickens against *Avibacterium paragallinarum* serovars A and C.

<table>
<thead>
<tr>
<th>Weeks post vaccination</th>
<th>Group (1)</th>
<th>Group (2)*</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serovar A</td>
<td>Serovar C</td>
<td>Serovar A</td>
</tr>
<tr>
<td>0</td>
<td>0.031</td>
<td>0.023</td>
<td>0.044</td>
</tr>
<tr>
<td>2WPV</td>
<td>1.304</td>
<td>1.474</td>
<td>1.292</td>
</tr>
<tr>
<td>3 WPV</td>
<td>1.388</td>
<td>1.476</td>
<td>1.549</td>
</tr>
</tbody>
</table>

Boostering

	2WPB	1.454	1.455	1.936	1.942	0.043
	4WPB	1.474	1.519	1.975	1.936	0.022
	6WPB	2.190	2.274	2.095	2.011	0.056
	8WPB	2.130	2.235	2.164	2.274	0.044
	10WPB	2.091	2.064	2.278	2.274	0.070
	12WPB	1.782	1.940	2.087	2.164	0.033
	14WPB	1.566	1.885	2.011	2.036	0.056
	16WPB	1.431	1.850	1.975	2.011	0.099
	18WPB	1.519	1.770	1.907	1.942	0.043
	20WPB	1.472	1.549	1.869	1.936	0.065
	22WPB	1.199	1.454	1.848	1.907	0.023

Group (1): SPF layer chickens vaccinated with combined aluminium hydroxide gel vaccine; Group (2): SPF layer chickens vaccinated with combined montanide ISA71 vaccine; Control: Unvaccinated group; WPV: Weeks Post Vaccination; WPB: Weeks Post Boostering; *Significant at P < 0.05

Results of Challenge test

As shown in tables 5 and 6, the protection rates in chickens vaccinated either with combined aluminium hydroxide gel vaccine or combined montanide ISA71 vaccine were 80% and 85% for *Salmonella* organisms. On the other hand it was (80%, 90% and 70%) for combined aluminium hydroxide gel vaccine and (90%, 100% and 90%) for combined montanide ISA71 vaccine against *Avibacterium paragallinarum* serovars A, B, and C. Meanwhile, the protection rate was 15% against *Salmonella* Typhimurium and *Salmonella* Enteritidis and 0% against infectious coryza among the unvaccinated chicken group.
Fecal shedding of *Salmonella* Typhimurium and *Salmonella* Enteritidis from challenged chickens

Fecal shedding of *Salmonella* Typhimurium and *Salmonella* Enteritidis as shown in table (7), from chickens vaccinated with either combined aluminium hydroxide gel vaccine or combined montanide ISA71 vaccine in the 1st, 2nd and 3rd weeks post challenge were (25%, 12.5% and 12.5%) and (22.22%, 11.11% and 0%) respectively while in the 4th week the fecal shedding disappeared. Regarding the control unvaccinated birds the fecal shedding were 66.66%, 66.66%, 33.33% and 33.33% in the 1st, 2nd, 3rd and 4th weeks post challenge respectively.

Table 5. Protective Efficacy of combined vaccine against salmonellosis in SPF chickens challenged with virulent strains

<table>
<thead>
<tr>
<th>VACCINE</th>
<th>Serovar</th>
<th>No. of inoculated chickens#</th>
<th>Survived chickens</th>
<th>Protection %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group (1)</td>
<td>Typhimurium</td>
<td>10</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Enteritidis</td>
<td>10</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>Group (2)</td>
<td>Typhimurium</td>
<td>10</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Enteritidis</td>
<td>10</td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td>Control</td>
<td>Typhimurium</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Enteritidis</td>
<td>10</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

*Protection % = (Survival birds/ total number of birds) x 100; Group (1): SPF layer chickens vaccinated with combined aluminium hydroxide gel vaccine; Group (2): SPF layer chickens vaccinated with combined montanide ISA71 vaccine; Challenge with virulent *Salmonella* Typhimurium and *Salmonella* Enteritidis; Control: Unvaccinated group.

Table 6. Protective Efficacy of combined vaccine against infectious coryza in SPF chickens challenged by *Avibacterium paragallinarum* serovars A, B, and C

<table>
<thead>
<tr>
<th>VACCINE</th>
<th>serovar</th>
<th>No. of inoculated chickens#</th>
<th>Survived chickens</th>
<th>Protection %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group (1)</td>
<td>A</td>
<td>10</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>10</td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>10</td>
<td>7</td>
<td>70</td>
</tr>
<tr>
<td>Group (2)</td>
<td>A</td>
<td>10</td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>10</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>10</td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td>Control</td>
<td>A</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Group (1): SPF layer chickens vaccinated with combined aluminium hydroxide gel vaccine; Group (2): SPF layer chickens vaccinated with combined montanide ISA71 vaccine; Challenge with virulent *Avibacterium paragallinarum* serovars A, B, and C; Control: Unvaccinated group.

Table 7. Results of fecal shedding of *Salmonella* Typhimurium and *Salmonella* Enteritidis from layer chickens after challenge

<table>
<thead>
<tr>
<th>Chicken groups</th>
<th>No. of birds positive for isolation / total No. of living birds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st week</td>
</tr>
<tr>
<td>Group (1)</td>
<td>2/8 (25%)</td>
</tr>
<tr>
<td>Group (2)</td>
<td>2/9 (22.22%)</td>
</tr>
<tr>
<td>Control</td>
<td>2/3 (66.66%)</td>
</tr>
</tbody>
</table>

Group (1): SPF layer chickens vaccinated with combined aluminium hydroxide gel vaccine; Group (2): SPF layer chickens vaccinated with combined montanide ISA71 vaccine; Control: Unvaccinated group.
DISCUSSION

Avian salmonellosis is a large group of acute and chronic diseases of poultry caused by any one or more member of genus Salmonella. However, particular Salmonella Enteritidis is the most prevalent one followed by Salmonella Typhimurium (Capita et al., 2003).

Infectious coryza is an acute respiratory disease of chickens caused by the bacterium Avibacterium paragallinarum. The greatest economic losses associated with infectious coryza results from poor growth performance in growing birds and marked reduction (10-40%) in egg production in layers (Blackall and Matsumoto, 2003).

Charoenvisal et al. (2017) examined efficacy of four commercial Infectious Coryza vaccines available in Thailand for protection rate against Thai field isolates serovar A, B, and C. The study revealed that the protection rate of Infectious Coryza vaccines depended on the strains isolated from each country.

So in this study combined vaccines have the advantage of protection against more than one disease at the same time, beside, reducing vaccination expenses, number of vaccination performed and saving time. The efficacy of a prepared combined vaccine against salmonellosis and infectious coryza using two different adjuvants; aluminium hydroxide gel and montanide ISA 71 was monitored in sera of vaccinated chickens using HI, MAT and ELISA. It was clear that antibody titers in sera of chickens for all tests were paralleled to each other in starting and increasing titer and also after boosting as illustrated in tables 1, 2, 3, 4 and 5 which agree with that obtained by Akeila et al. (2014). Who evaluated a combined vaccine against A. paragallinarum and S. Enteritidis and found that antibody titers reached the maximum levels at the 6th WPV in the vaccinated groups.

With serovar B vaccines, a HI test was not done as it is based on a hyaluronidase-treated antigen and formaldehyde-treated RBC and gave only very low HI titers following vaccination (as compared with serovar A or C vaccines) but the vaccinated birds were significantly protected against homologous challenge. These results correlate with other studies done by Yamaguchi et al. (1991).

The protection rates against Salmonella Typhimurium and Enteritidis as measured by challenge test were 80% and 85% in chickens vaccinated with combined aluminium hydroxide gel vaccine and combined montanide ISA71 vaccine respectively, as shown in table 5.

Also the protection rates against Avibacterium paragallinarum serovars A, B, and C were 80%, 90% and 70% in chickens vaccinated with combined aluminium hydroxide gel vaccine and were 90%, 100% and 90% of the montanide ISA71 vaccine respectively (Table 6).

Meanwhile, the protection rate was 15% against Salmonella Typhimurium and Enteritidis and 0% against infectious coryza among the unvaccinated chicken group and these results agreed with by Akeila et al. (2014) who reported 73.3% and 93.3% protection rate against S. Enteritidis and A. paragallinarum, respectively in a combined vaccine containing both organisms.

The fecal shedding of Salmonella Typhimurium and Enteritidis in the 1st, 2nd and 3rd weeks post challenge in chickens vaccinated with combined aluminium hydroxide gel vaccine was 25%, 12.5% and 12.5% , while it was 22.22%, 11.11% and 0% for those vaccinated only with montanide ISA71 vaccine, respectively. The fecal shedding disappeared in the 4th week.

Regarding the control unvaccinated birds the fecal shedding were 66.66%, 66.66%, 33.33% and 33.33% in the 1st, 2nd, 3rd and 4th weeks post challenge and these result agreed with by Nourhan et al. (2015) who found that fecal shedding of Salmonella organisms in vaccinated group of chickens with S. Kentucky reached 8.33% while the unvaccinated control group at 3 week post challenge revealed fecal shedding of 25 %. No shedding was detected at the fourth week post challenge in the vaccinated group, while there was 16.6% shedding in control unvaccinated group.

So, the SPF layer chickens vaccinated with combined vaccine against salmonellosis and infectious coryza adjuvanted with montanide ISA71 gave high immune response and protection which is capable of improving vaccine efficacy via the induction of a strong and long lasting immunity. Also it is an excellent adjuvant stimulating humoral and cellular responses. This product is recommended for producing a potent vaccine able to protect layer chickens against salmonellosis and infectious coryza.

CONCLUSION

From the above results it could be concluded that producing a vaccine from locally isolated Salmonella and Avibacterium (Haemophilus) paragallinarum strains adjuvanted with montanide ISA71 is recommended to aid in controlling avian salmonellosis and infectious coryza at the same time.
Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors participated in making the design, performing the experiment, analyses of the data, and writing the paper.

REFERENCES

Manuscript as Original Research Paper, Short Communication, Case Reports and Review or Mini-Review are invited for rapid peer-review publishing in the Journal of World Poultry Research. Considered subject areas include: Husbandry and management; construction, environment and welfare; exotic and wild birds; Biochemistry and cellular biology; immunology, avian disease control; layer and quail management; nutrition and feeding; physiology, genetics, reproduction and hatching; technology, processing and food safety...

Submission
The manuscript and other correspondence should preferentially be submit online. Please embed all figures and tables in the manuscript to become one single file for submission. Once submission is complete, the system will generate a manuscript ID and password sent to author's contact emails: editor@jwpr.science-line.com or editorjwpr@gmail.com. All manuscripts must be checked (by English native speaker) and submitted in English for evaluation (in totally confidential and impartial way).

Supplementary information:
The online submission form allows supplementary information to be submitted together with the main manuscript file and covering letter. If you have more than one supplementary files, you can submit the extra ones by email after the initial submission. Author guidelines are specific for each journal. Our Word template can assist you by modifying your page layout, text formatting, headings, title page, image placement, and citations/references such that they agree with the guidelines of journal. If you believe your article is fully edited per journal style, please use our MS Word template before submission.

Supplementary materials may include figures, tables, methods, videos, and other materials. They are available online linked to the original published article. Supplementary tables and figures should be labeled with a “S”, e.g. “Table S1” and “Figure S1”. The maximum file size for supplementary materials is 10MB each. Please keep the files as small possible to avoid the frustrations experienced by readers with downloading large files.

Submission to the Journal is on the understanding that:
1. The article has not been previously published in any other form and is not under consideration for publication elsewhere;
2. All authors have approved the submission and have obtained permission for publication work.
3. Researchers have proper regard for conservation and animal welfare considerations. Attention is drawn to the 'Guidelines for the Treatment of Animals in Research and Teaching'. Any possible adverse consequences of the work for populations or individual organisms must be weighed against the possible gains in knowledge and its practical applications. If the approval of an ethics committee is required, please provide the name of the committee and the approval number obtained.

Ethics Committee Approval
Experimental research involving animals should have been approved by author’s institutional review board or ethics committee. This information can be mentioned in the manuscript including the name of the board/committee that gave the approval. The use of animals in experiments will have observed the Interdisciplinary Principles and Guidelines for the Use of Animals in Research, Testing, and Education by the New York Academy of Sciences, Ad Hoc Animal Research Committee.

Graphical Abstract:
Authors should provide a graphical abstract (a beautifully designed feature figure) to represent the paper aiming to catch the attention and interest of readers. Graphical abstract will be published online in the table of content. The graphical abstract should be colored, and kept within an area of 12 cm (width) x 6 cm (height) or with similar format. Image should have a minimum resolution of 300 dpi and line art 1200dpi. Note: Height of the image should be no more than the width. Please avoid putting too much information into the graphical abstract as it occupies only a small space.

Authors can provide the graphical abstract in the format of PDF, Word, PowerPoint, jpg, or png, after a manuscript is accepted for publication. See more sample graphical abstracts in archive.

Presentation of the article
Main Format:
First page of the manuscripts must be properly identified by the title and the name(s) of the author(s). It should be typed in Times New Roman (font sizes: 17pt in capitalization for the title, 10pt for the section headings in the body of the text and the main text, double spaced, in A4 format with 2cm margins. All pages and lines of the main text should be numbered consecutively throughout the manuscript. The manuscript must be saved in a .doc format, (not .docx files). Abbreviations in the article title are not allowed.
Manuscripts should be arranged in the following order:

1. TITLE (brief, attractive and targeted);
2. Name(s) and Affiliation(s) of author(s) (including post code) and corresponding E-mail;
3. ABSTRACT;
4. Key words (separate by semicolons; or comma,);
5. Abbreviations (used in the manuscript);
6. INTRODUCTION;
7. MATERIALS AND METHODS;
8. RESULTS;
9. DISCUSSION;
10. CONCLUSION;
11. Acknowledgements (if there are any);
12. Declarations
13. REFERENCES;
14. Tables;
15. Figure captions;
16. Figures;

Results and Discussion can be presented jointly.
Discussion and Conclusion can be presented jointly.

Article Sections Format:

Title should be a brief phrase describing the contents of the paper. The first letter of each word in title should use upper case. The Title Page should include the author(s)’s full names and affiliations, the name of the corresponding author along with phone and e-mail information. Present address (es) of author(s) should appear as a footnote.

Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The abstract should be 150 to 300 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 8 key words that will provide indexing references should be listed.

Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and Methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail. The ethical approval for using animals in the researches should be indicated in this section with a separated title.

Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the author(s)’s experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the results but should be put into the discussion section.

Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

Conclusion can be presented jointly.

Declarations including Ethics, Consent to publish, Competing interests, Authors’ contributions, and Availability of data and materials are necessary.

Acknowledgments of persons, grants, funds, etc. should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph forms or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or PowerPoint before pasting in the Microsoft Word manuscript file. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.
Declarations section - Please include declarations heading

Please ensure that the sections:
- Ethics (and consent to participate)
- Consent to publish
- Competing interests
- Authors' contributions
- Availability of data and materials

are included at the end of your manuscript in a Declarations section.

Consent to Publish

Please include a ‘Consent for publication’ section in your manuscript. If your manuscript contains any individual person’s data in any form (including individual details, images or videos), consent to publish must be obtained from that person, or in the case of children, their parent or legal guardian. All presentations of case reports must have consent to publish. You can use your institutional consent form or our consent form if you prefer. You should not send the form to us on submission, but we may request to see a copy at any stage (including after publication). If your manuscript does not contain any individual persons data, please state “Not applicable” in this section.

Authors’ Contributions

For manuscripts with more than one author, JWPR require an Authors’ Contributions section to be placed after the Competing Interests section.

An ‘author’ is generally considered to be someone who has made substantive intellectual contributions to a published study. To qualify as an author one should 1) have made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; 2) have been involved in drafting the manuscript or revising it critically for important intellectual content; and 3) have given final approval of the version to be published. Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content. Acquisition of funding, collection of data, or general supervision of the research group, alone, does not justify authorship.

We suggest the following format (please use initials to refer to each author’s contribution): AB carried out the molecular genetic studies, participated in the sequence alignment and drafted the manuscript. JY carried out the immunoassays. MT participated in the sequence alignment. ES participated in the design of the study and performed the statistical analysis. FG conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

For authors that equally participated in a study please write ‘All/Both authors contributed equally to this work.’

Contributors who do not meet the criteria for authorship should be listed in an acknowledgements section.

Competing Interests

Competing interests that might interfere with the objective presentation of the research findings contained in the manuscript should be declared in a paragraph heading “Competing interests” (after Acknowledgment section and before References). Examples of competing interests are ownership of stock in a company, commercial grants, board membership, etc. If there is no competing interest, please use the statement “The authors declare that they have no competing interests.”.

Journal World™ Poultry Research adheres to the definition of authorship set up by The International Committee of Medical Journal Editors (ICMJE). According to the ICMJE authorship criteria should be based on 1) substantial contributions to conception and design of, or acquisition of data or analysis and interpretation of data, 2) drafting the article or revising it critically for important intellectual content and 3) final approval of the version to be published. Authors should meet conditions 1, 2 and 3. It is a requirement that all authors have been accredited as appropriate upon submission of the manuscript. Contributors who do not qualify as authors should be mentioned under Acknowledgements.

Change in authorship

We do not allow any change in authorship after provisional acceptance. We cannot allow any addition, deletion or change in sequence of author name. We have this policy to prevent the fraud.

Acknowledgements

We strongly encourage you to include an Acknowledgements section between the Authors’ contributions section and Reference list. Please acknowledge anyone who contributed towards the study by making substantial contributions to conception, design, acquisition of data, or analysis and interpretation of data, or who was involved in drafting the manuscript or revising it critically for important intellectual content, but who does not meet the criteria for authorship. Please also include their source(s) of funding. Please also acknowledge anyone who contributed materials essential for the study. Authors should obtain permission to acknowledge from all those mentioned in the Acknowledgements. Please list the source(s) of funding for the study, for each author, and for the manuscript preparation in the acknowledgements section. Authors must describe the role of the funding body, if any, in study design; in the collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

Data Deposition

Nucleic acid sequences, protein sequences, and atomic coordinates should be deposited in an appropriate database in time for the accession number to be included in the published article. In computational studies where the sequence information is unacceptable for inclusion in databases because of lack of experimental validation, the sequences must be published as an additional file with the article.
References:

A JWPR reference style for EndNote may be found here.

1. All references to publications made in the text should be presented in a list with their full bibliographical description. DOI number or the link of article should be added to the end of the each reference.

2. In the text, a reference identified by means of an author's name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author's surname should be mentioned, followed by 'et al'. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like 'a' and 'b' after the date to distinguish the works.

3. References in the text should be arranged chronologically (e.g. Kelebeni, 1983; Usman and Smith, 1992 and Agindotan et al., 2003). The list of references should be arranged alphabetically on author's surnames, and chronologically per author. If an author's name in the list is also mentioned with co-authors, the following order should be used: Publications of the single author, arranged according to publication dates - publications of the same author with one co-author - publications of the author with more than one co-author. Publications by the same author(s) in the same year should be listed as 1992a, 1992b, etc.

4. Names of authors and title of journals, published in non-latin alphabets should be transliterated in English.

5. A sample of standard reference is "1th Author surname A, 2th Author surname B and 3th Author surname C (2013). Article title should be regular and 9 pt. Journal of World`s Poultry Research, Volume No. (Issue No.): 00-00." DOI:XXX."

6. Journal titles should be full in references. The titles should not be italic.

7. Journal titles should be full in references. The titles should not be italic.

8. References with more than 10 authors should list the first 10 authors followed by 'et al.'

8. The color of references in the text of article is blue. Example: (Preziosi et al., 2002; Mills et al., 2015).

-Examples (at the text):

--Examples (at References section):

a) For journal:

b) For symposia reports and abstracts:

c) For edited symposia, special issues, etc., published in a journal:

d) For books:

e) Books, containing sections written by different authors:
Kunev M (1979). Pig Fattening. In: A. Alexiev (Editor), Farm Animal Feeding. Vol. III. Feeding of Different Animal Species, Zemizdat, Sofia, p. 233-243 (Bg). In referring to a personal communication the two words are followed by the year, e.g. (Brown, J. M., personal communication, 1982). In this case initials are presented in a list with their full bibliographical description. DOI

Nomenclature and Abbreviations:
Nomenclature should follow that given in NCBI web page and Chemical Abstracts. Standard abbreviations are preferable. If a new abbreviation is used, it should be defined at its first usage. Abbreviations should be presented in one paragraph, in the format: "term: definition". Please separate the items by ";".

E.g. ANN: artificial neural network; CFS: closed form solution; ...

Abbreviations of units should conform with those shown below:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declititre</td>
<td>dl</td>
<td>Kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>Milligram</td>
<td>mg</td>
<td>Hours</td>
<td>h</td>
</tr>
<tr>
<td>Micrometer</td>
<td>mm</td>
<td>Minutes</td>
<td>min</td>
</tr>
<tr>
<td>Molar</td>
<td>mol/L</td>
<td>Millilitre</td>
<td>ml</td>
</tr>
<tr>
<td>Percent</td>
<td>%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Formulae, numbers and symbols:

1. Typewritten formulae are preferred. Subscripts and superscripts are important. Check disparities between zero (0) and the letter O, and between one (1) and the letter I.
2. Describe all symbols immediately after the equation in which they are first used.
3. For simple fractions, use the solidus (/), e.g. 10 /38.
4. Equations should be presented in parentheses on the right-hand side, in tandem.
5. Levels of statistical significance which can be used without further explanations are *P < 0.05, **P < 0.01, and ***P < 0.001
6. In the English articles, a decimal point should be used instead of a decimal comma.
7. In chemical formulae, valence of ions should be given, e.g. Ca2+ and CO32-, not as Ca++ or CO3.
8. Numbers up to 10 should be written in the text by words. Numbers above 1000 are recommended to be given as 10 powered x.
9. Greek letters should be explained in the margins with their names as follows: Αα - alpha, Ββ - beta, Γγ - gamma, Δδ - delta, Εε - epsilon, Ζζ - zeta, Ηη - eta, Θθ - theta, Ιι - iota, Κκ - kappa, Λλ - lambda, Μμ - mu, Νν - nu, Ξξ - xi, Οο - omicron, Ππ - pi, Ρρ - rho, Σσ - sigma, Ττ - tau, Υυ - upsilon, Φφ - phi, Χχ - chi, Ψψ - psi, Ωω - omega.

Review/Decisions/Processing

Firstly, all manuscripts will be checked by Docol®c, a plagiarism finding tool. A single blind reviewing model is used by JWPR for non-plagiarized papers. The manuscript is edited and reviewed by the English language editor and three reviewers selected by section editor of JWPR respectively. Also, a reviewer result form is filled by reviewer to guide authors. Possible decisions are: accept as is, minor revision, major revision, or reject. See sample of evaluation form. Authors should submit back their revisions within 14 days in the case of minor revision, or 30 days in the case of major revision.

To submit a revision please sign in here, fill out the form, and mark Revised. Attach the revision (MS word) and continue submission. After review and editing the article, a final formatted proof is sent to the corresponding author once again to apply all suggested corrections during the article process. The editor who received the final revisions from the corresponding authors shall not be held responsible for any mistakes shown in the final publication. Manuscripts with significant results are typically reviewed and published at the highest priority.

Plagiarism: There is a zero-tolerance policy towards plagiarism (including self-plagiarism) in our journals. Manuscripts are screened for plagiarism by Docol®c plagiarism finding tool, before or during publication, and if found they will be rejected at any stage of processing. See sample of Docol®c-Report.

Declaration

After manuscript accepted for publication, a declaration form will be sent to the corresponding author who that is responsible to coauthors’ agreements to publication of submitted work in JWPR after any amendments arising from the peer review.

Date of issue

The journal will be issued on 25th of March, June, September and December, each year.

Publication charges

No peer-reviewing charges are required. However, there is a $95 editor fee for the processing of each primary accepted paper. Payment can be made by credit card, bank transfer, money order or check. Instruction for payment is sent during publication process as soon as manuscript is accepted.

The submission fee will be waived for invited authors, authors of hot papers, and corresponding authors who are editorial board members of the Journal of World® Poultry Research (JWPR). The Journal will consider requests to waive the fee for cases of financial hardship (for high quality manuscripts and upon acceptance for publication). Requests for waiver of the submission fee must be submitted via individual cover letter by the corresponding author and cosigned by an appropriate institutional official to verify that no institutional or grant funds are available for the payment of the fee. Letters including the manuscript title and manuscript ID number should be sent to: editor [at] jwpr.science-line.com or editorjwpr [at] gmail.com. It is expected that waiver requests will be processed and authors will be notified within one business day.

The Waiver policy

The submission fee will be waived for invited authors, authors of hot papers, and corresponding authors who are editorial board members of the Journal of World® Poultry Research. The Journal will consider requests to waive the fee for cases of financial hardship (for high quality manuscripts and upon acceptance for publication). Requests for waiver of the submission fee must be submitted via individual cover letter by the corresponding author and cosigned by an appropriate institutional official to verify that no institutional or grant funds are available for the payment of the fee. Letters including the manuscript title and manuscript ID number should be sent to: editor [at] jwpr.science-line.com. It is expected that waiver requests will be processed and authors will be notified within two business day.

The OA policy

Journal of World® Poultry Research is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of Open Access.
Paper Submission Flow

Submission Preparation Checklist
Authors are required to check off their submission's compliance with all of the following items, and submissions may be returned to authors that do not adhere to the following guidelines.

The submission has not been previously published, nor is it before another journal for consideration (or an explanation has been provided in Comments to the Editor).
The submission file is in Microsoft Word, RTF, or PDF document file format.
Where available, URLs for the references have been provided.
The text is single-spaced; uses a 12-point font; and all illustrations, figures, and tables are placed within the text at the appropriate points, rather than at the end.
The text adheres to the stylistic and bibliographic requirements outlined in the Author Guidelines.
Scienceline Publication, Ltd is a limited liability non-profit non-stock corporation incorporated in Turkey, and also is registered in Iran. Scienceline journals that concurrently belong to many societies, universities and research institutes, publishes internationally peer-reviewed open access articles and believe in sharing of new scientific knowledge and vital research in the fields of life and natural sciences, animal sciences, engineering, art, linguistic, management, social and economic sciences all over the world. Scienceline journals include:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSN: 2228-7701; Bi-monthly View Journal</td>
<td>ISSN: 2252-0430; Bi-monthly View Journal</td>
<td>ISSN: 2251-9939; Bi-monthly View Journal</td>
<td>ISSN: 2322-4783; Quarterly View Journal</td>
</tr>
<tr>
<td>Email: editors@ojafir.ir</td>
<td>Email: ojeu@ojceu.ir</td>
<td>Email: editors@jlsb.science-line.com</td>
<td>Email: editor@ajmpr.science-line.com</td>
</tr>
<tr>
<td>Submit Online >></td>
<td>Submit Online >></td>
<td>Submit Online >></td>
<td>Submit Online >></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSN: 2322-455X; Quarterly View Journal</td>
<td>ISSN: 2322-4568; Quarterly View Journal</td>
<td>ISSN: 2322-4770; Quarterly View Journal</td>
<td>ISSN: 2322-6114; Irregular View Journal</td>
</tr>
<tr>
<td>Email: editor@wjprr.science-line.com</td>
<td>Email: editor@wjv.science-line.com</td>
<td>Email: info@jems.science-line.com</td>
<td>Email: editor@jweet.science-line.com</td>
</tr>
<tr>
<td>Submit Online >></td>
<td>Submit Online >></td>
<td>Submit Online >></td>
<td>Submit Online >></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSN: 2383-1553; Irregular View Journal</td>
<td>ISSN: 2383-0948; Quarterly View Journal</td>
<td>ISSN: 2382-9907; Quarterly View Journal</td>
<td>ISSN: 2383-0980; Quarterly View Journal</td>
</tr>
<tr>
<td>Email: jaas@science-line.com</td>
<td>Email: ajses@science-line.com</td>
<td>Email: jabfr@science-line.com</td>
<td>Email: sjmie@science-line.com</td>
</tr>
<tr>
<td>Submit Online >></td>
<td>Submit Online >></td>
<td>Submit Online >></td>
<td>Submit Online >></td>
</tr>
</tbody>
</table>

Copyright © 2017. All Rights Reserved.
Scienceline Journals
Email: administrator@science-line.com