Performance and Egg Quality of Laying Hens Fed with Boiled Tomato Waste Powder

Maria Endo Mahata¹*, Taufik Hidayat¹, Gina Amalia Nurhuda¹, Yose Rizal¹ and Ardi²

¹Nutrition and Feed Technology Departement, Faculty of Animal Science, Universitas Andalas, 25163, Indonesia
²Agronomy Department, Faculty of Agriculture, Universitas Andalas, 25163, Indonesia
*Correspondent author’s E-mail: maria@ansci.unand.ac.id; ORCID: 0000-0002-4692-9806

ABSTRACT

This study was performed to evaluate the effect of inclusion of boiled tomato waste powder in laying hens diet on growth performances and egg quality. Tomato waste used in this experiment was surplus and unsold mature tomato from the last harvest on the field. The tomato waste was boiled in boiling water (100 ºC) for 8 minutes to convert their lycopene structure from trans to cis, which is easily absorbed by the poultry digestive tract. In a completely randomized design, 200 Isa Brown laying hens were divided into five groups with different inclusion levels of boiled tomato waste powder (0, 3, 6, 9 and 12%) in an iso-nitrogenous (16%) and iso-caloric (2600 kcal/kg) diet. Daily feed intake, hen day egg production, egg weight, egg mass, feed conversion ratio, eggshell thickness, and eggshell strength were measured. The obtained results showed that boiled tomato waste powder in the diet did not significantly affect daily feed intake, feed conversion ratio, egg production and egg quality. In conclusion, the tomato boiled powder could be used up to 12% in laying hens diet with no effect on performance and egg quality of laying hens.

Key words: Diet, Egg quality, Layer performance, Lycopene, Tomato

INTRODUCTION

Tomato production in Indonesia continues to increase, in 2016 as much as 883,234 tons and in 2017 reached 962,849 tons (Badan Pusat Statistik Indonesia, 2017). Raw tomato contains lycopene as much as 9.25 mg/100g (Perveen et al., 2015). The lycopene compounds can act as antioxidants (Muller et al., 2011) and also reduce cholesterol in blood serum, egg yolk, and broiler meat (Mahata et al., 2016a; and Mahata et al., 2016b). The lycopene inhibits cholesterol synthesis through inhibition of HMG-CoA reductase activity, modulation of low-density lipoprotein receptor activity and inhibition of acyl-CoA:cholesterol acyltransferase (Palozza et al., 2012). In fresh tomato, lycopene is in trans form, which is difficult to absorb in the digestive tract of poultry, while cis-lycopene can be more easily absorbed (Knockaert et al., 2012; Cooperstone et al., 2015). The heating process of tomatoes by steaming, boiling and roasting increases the availability of lycopene in cis form (Sahlin et al., 2016; and Handayani et al., 2018). The boiled tomato waste can be used up to 7% in broiler rations to lower cholesterol in meat and blood serum with no effect on the performance (Mahata et al., 2016a). There are little report on the use of boiled tomato waste in rations of laying hens, therefore, this research was conducted to evaluate the effects of boiled tomato waste on performance and egg quality of laying hens.

MATERIALS AND METHODS

Ethical approval

The present study was approved by the Animal Ethics Committee of the Universitas Andalas, Padang, Indonesia (No: 456/KEP/FK/2019).

Poultry

The experiment was performed by using 200 laying hens strain of ISA Brown at the age of 32 weeks with 80% hen day egg production condition.

Boiled tomato waste powder preparation

Fresh tomato waste was boiled in boiling water at 100 °C for 8 minutes. Then, it was sun-dried and powdered by a grinder.
Experimental design

The experiment was conducted in a completely randomized design with five treatment group, including different inclusion levels (0, 3, 6, 9 and 12%) of boiled tomato waste powder in laying hens diets. Each treatment was replicated four times. Each replicate consisted of five birds. Diets were formulated iso-protein (16%) and iso-energy (2990 kcal/kg diet) and composition of diets are presented in table 1. The experiment lasted for 60 days.

<table>
<thead>
<tr>
<th>Table 1. Diet composition and chemical analysis of experimental diets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients (%)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Concentrate for laying hens</td>
</tr>
<tr>
<td>Yellow corn</td>
</tr>
<tr>
<td>Rice bran</td>
</tr>
<tr>
<td>Palm oil</td>
</tr>
<tr>
<td>Oyster shell flour</td>
</tr>
<tr>
<td>Boiled tomato waste powder</td>
</tr>
<tr>
<td>Premix</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Calculated analysis</td>
</tr>
<tr>
<td>Crude protein (%)</td>
</tr>
<tr>
<td>Fat (%)</td>
</tr>
<tr>
<td>Crude fiber (%)</td>
</tr>
<tr>
<td>Calcium (%)</td>
</tr>
<tr>
<td>Phosphor available (%)</td>
</tr>
<tr>
<td>Methionine (%)</td>
</tr>
<tr>
<td>Lysin (%)</td>
</tr>
<tr>
<td>Lycopene (ppm)</td>
</tr>
<tr>
<td>Metabolizable energy (kcal/kg)</td>
</tr>
</tbody>
</table>

Measured variables

Daily feed intake

Daily feed intake was calculated by the following equation:

\[
\text{Daily feed intake} = \frac{\text{The amount of diet given for 1 week} - \text{The amount of diet left over 1 week}}{7 \text{ day}}
\]

Hen day egg production

Hen day egg production was measured by the method described by Cesari et al. (2014) according to following equation:

\[
\text{Hen day egg production} = \frac{\text{The number of eggs produced on the day of measurement}}{\text{The number of laying hens that live on the day measurement}} \times 100\%
\]

Egg weight

Egg weight was estimated by the following formula:

\[
\text{Egg weight} = \frac{\text{Egg weight produced by laying hens in each unit}}{\text{The number of eggs produced each unit}}
\]

Egg mass

The egg mass was calculated by the method described by Cesari et al. (2014) according to following formula:

\[
\text{Egg mass} = \text{Hen day egg production (%) \times Egg weight (g)}
\]

Feed conversion ratio

Feed conversion ratio was calculated by the method described by Kulshreshtha et al. (2014).

\[
\text{Feed conversion ratio} = \frac{\text{Ration consumed (kg)}}{\text{Egg production} \times \text{Egg weight (kg)}}
\]

Haugh unit

Haugh unit is an indicator of albumen quality. Eggs were weighed using a digital scale and then broken. The egg shards were placed on a flat glass, then the height of the albumen was measured using a caliper. Haugh unit was calculated according to (Haugh, 1937).

Eggshell thickness

The eggshell thickness was measured by using the method described by Aydin et al. (2008). The eggshell thickness was measured in three parts, namely the equator, the air bag, and the tip of the egg section. Measurement results from the three sections were averaged to get the eggshell thickness. The instrument used was a screw micrometer.

Eggshell strength

Eggshell strength was measured using the Egg Force Reader (SHIMPO FGV-10XY).

Statistical analysis

Data were analyzed by analysis of variance (ANOVA) using a general linear model procedure using SPSS software version 16.0. The difference among treatment means was determined by using Duncan’s multiple range test (p<0.05).
RESULTS AND DISCUSSION

The inclusion of boiled tomato waste powder in laying hens diet did not significantly affect feed conversion ratio, egg mass, egg weight, hen day egg production, and daily feed intake (Table 2). The boiled tomato waste powder also did not significantly affect Haugh unit, eggshell thickness, and eggshell strength of laying hens (Table 3). The inclusion of boiled tomato waste powder in laying hens diet up to 12% did not affect the daily feed intake due to similar palatability of treatment diets. Similarly, An et al. (2019) demonstrated that inclusion of synthetic lycopene or tomato paste in laying hens diet did not affect daily feed intake. Furthermore, Lee et al. (2016) reported that the inclusion of lycopene on broiler's ration did not affect feed consumption. The average daily feed intake of laying hens in this study ranged from 116.47 to 121.30 g/bird. This finding was approximately similar to results obtained by Panaite et al. (2019) who found daily feed intake of laying hens fed a diet supplemented with flaxseed and dried tomato ranged from 120 to 217 g/bird.

All inclusion levels of boiled tomato waste powder used in this experiment did not affect hen day egg production, egg weight, and egg mass. Some previous studies reported the inclusion of 190 g/kg dried tomato pomace, 6% tomato waste meal, 25 g/mg lycopene, and 16% dried tomato pomace had no effects on hen day egg production, egg weight, egg mass, and feed conversion ratio (Salajegheh et al., 2012; Habanabashaka et al., 2014; Jalalinasab et al., 2014).

Table 2. Average of daily feed intake, hen day egg production, egg weight, and egg mass of laying hens fed with different inclusion levels of boiled tomato waste powder

<table>
<thead>
<tr>
<th>Inclusion levels of boiled tomato waste powder in diet</th>
<th>Daily feed intake (g/bird/day)</th>
<th>Hen day egg production (%)</th>
<th>Egg weight (g)</th>
<th>Egg mass (g)</th>
<th>Feed conversion ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>116.47</td>
<td>83.34</td>
<td>61.98</td>
<td>51.62</td>
<td>2.29</td>
</tr>
<tr>
<td>3%</td>
<td>121.59</td>
<td>89.83</td>
<td>62.18</td>
<td>55.89</td>
<td>2.18</td>
</tr>
<tr>
<td>6%</td>
<td>119.41</td>
<td>88.33</td>
<td>62.09</td>
<td>54.89</td>
<td>2.19</td>
</tr>
<tr>
<td>9%</td>
<td>118.37</td>
<td>86.92</td>
<td>62.9</td>
<td>54.77</td>
<td>2.18</td>
</tr>
<tr>
<td>12%</td>
<td>121.30</td>
<td>89.17</td>
<td>62.65</td>
<td>55.89</td>
<td>2.18</td>
</tr>
</tbody>
</table>

Table 3. Average of Haugh unit, eggshell thickness, and eggshell strength of laying hens fed with different inclusion levels of boiled tomato waste powder

<table>
<thead>
<tr>
<th>Inclusion levels of boiled tomato waste powder in diet</th>
<th>Haugh unit</th>
<th>Eggshell thickness (mm)</th>
<th>Eggshell strength (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>81.21</td>
<td>0.425</td>
<td>3.89</td>
</tr>
<tr>
<td>3%</td>
<td>77.47</td>
<td>0.409</td>
<td>4.29</td>
</tr>
<tr>
<td>6%</td>
<td>69.22</td>
<td>0.429</td>
<td>4.62</td>
</tr>
<tr>
<td>9%</td>
<td>79.44</td>
<td>0.430</td>
<td>4.63</td>
</tr>
<tr>
<td>12%</td>
<td>70.19</td>
<td>0.421</td>
<td>3.43</td>
</tr>
</tbody>
</table>

The inclusion of boiled tomato waste powder in laying hens diet did not affect Haugh unit, eggshell thickness, and eggshell strength of laying hens (Table 3). It has been reported that the inclusion of lycopene in laying hens diet did not have an effect on the Haugh unit (Honda et al., 2019; An et al., 2019). The average Haugh unit of laying hens in this study ranged from 69 to 81. Honda et al. (2019) reported that the Haugh unit of eggs from laying hens fed with lycopene-supplemented diet ranged from 5.80 to 91.90. In this experiment, the inclusion of boiled tomato waste powder up to 12% in diet also did not affect the eggshell thickness and eggshell strength. This finding can be attributed to the similar content of calcium and phosphorus in each treatment diet. According to Ahmed et al. (2013), calcium is one of the nutrients that influence the eggshell quality and production of laying hens. Eggshell strength of laying hens fed 2.62% calcium in the diet was more weakness than that of laying hens fed diet containing 3.70 to 4.4% calcium (Jiang et al., 2013). Some studies reported that the addition of tomato powder, flaxseed and dried tomato flour to laying hens diet did not affect the thickness and strength of eggshell (Akdemir et al., 2012; and Panaite et al., 2019). The average of eggshell thickness in this study ranged from 0.409 to 0.430 mm, and the eggshell strength ranged from 3.43 to 4.62 kg/cm². These results were similar to that reported by An et al. (2019) who found eggshell thickness and eggshell strength of eggs from laying hens fed with lycopene or tomato paste were 0.35-0.36 mm and 4.39-4.74 kg/cm², respectively.
DECLARATIONS

Acknowledgments
This research was a second year competency grant scheme funded by the Directorate General of Higher Education Republic of Indonesia in 2017. We are grateful to the Ministry of Education Republic of Indonesia and LPPM Universitas Andalas.

Author’s contribution
Maria Endo Mahata created the idea, designed the study and drafted the manuscript. Taufik Hidayat and Gina Amalia Nurhuda collected data and performed statistical analysis. Yose Rizal and Ardi created the idea and designed the study.

Competing interests
The authors declared that they have no competing interests.

REFERENCES

