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ABSTRACT 
Pluripotent hematopoietic stem cells undergo maturation to regenerate blood cells. T-cell and B-cell 

maturation from common lymphoid progenitors (CLPs) is regulated by distinct transcription factors and 

signaling pathways. Notch signaling, GATA3, and TCF1 drive T-cell fate, while EBF1, PU.1, E2A, Pax5, 

TCF1, and Foxo1 regulate B-cell differentiation. Alterations in these factors can cause lineage deviations. 

Gene expression profiling of the chick thymus and bursa reveals dynamic expression patterns of transcription 

factors, cytokines, and signal molecules. Notch1 and Dll1 expression that increase during later stages indicate 

the ongoing role of Notch signaling in T-cell lineage maintenance. The current study aimed to identify 

differentially expressed genes during the development of the avian immune organs, focusing on the thymus 

and bursa using 24 Ross 308 avian breed. The mRNA libraries from these organs were analyzed using 

quantitative Real-time PCR analysis at six time points spanning the embryonic ages (days 15 and 18) and post-

hatch age (days 3, 7, 14, and 28). The data for the gene expression indicated significant variations across 

different stages of immune organ development. Differential gene expression was observed between sorted T 

and B-cells, with GATA3, CD3e, CD4, and Ptprc showing higher expression in the T-cell population, and 

Pax5 and CD81 exhibiting higher expression in the B-cell population. Notably, ENO1 and IRF4 showed 

higher expression in T-cells at E15 and B-cells at E18. The study highlights the importance of regulatory 

factors and genes in maintaining cellular identity, furthers the understanding of avian immunology, and has the 

potential for improving poultry health and studying immune-related diseases in humans. These findings pave 

the way for further research on the role of biochemical components under important disease conditions in 

avian immunology and their potential applications for poultry health. 
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INTRODUCTION 
 

Pluripotent hematopoietic stem cells (HSCs) undergo 

consecutive rounds of biochemical development and 

maturation during differentiation to regenerate and self-

maintain all types of blood cells (Ogawa, 1993). These 

HSCs give rise to multipotent hematopoietic progenitors 

(MPPs), which then undergo lineage commitment, 

resulting in the formation of either common lymphoid 

progenitors (CLP) or common myeloid progenitors (CMP; 

Kondo et al., 1997; Akashi et al., 2000). The progression 

of CLPs toward a specific lymphoid lineage, either T-cell 

or B-cell, is highly regulated by a network of biochemical 

transcription factors that have been well established (Naito 

et al., 2011; Thompson and Zúñiga-Pflücker, 2011; Boller 

and Grosschedl, 2014; Rothenberg, 2014). As both B-cells 

and T-cells are initially generated from CLP, they have 

highly similar receptor structures, progression regulation, 

and pathways across different stages of development 

(Borst et al., 1996; Han et al., 2023).  

Despite the similarities between T-cell and B-cell 

maturation, the differentiation and proliferation of 

precursor cells toward either a mature T-cell or B-cell are 

coupled to extensive and strictly regulated pathways 
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across different stages of development (Figure  1). This 

ensures the expansion of specific cell populations that 

have passed all the biochemical checkpoints required for 

expressing a specific repertoire of the properly selected 

receptor. For instance, in the case of T-cells, several 

biochemical transcription factors mediate the commitment 

of progenitor cells toward a T-cell fate (Busslinger, 2004; 

Rothenberg et al., 2010; Yang et al., 2010; Naito et al., 

2011). The Notch signaling pathway is a crucial signal for 

the initiation of the T-cell generation pathway and 

differentiation in the early stages of T-cell development 

(Radtke et al., 1999; Sambandam et al., 2005). GATA3 (a 

double zinc finger) and TCF1 (T-cell factor 1) are 

important biochemical transcription factors required for 

determining T-cell fate and have been identified as 

downstream factors of Notch1 in nearly all stages of early 

T cell progenitor lineage (Figure  1, Hozumi et al., 2008; 

Weber et al., 2011). 
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Figure  1. The pluripotent hematopoietic stem cells (HSCs) toward common lymphoid progenitor (CLP) and lymphocyte 

lineage commitment through the regulation of mRNA networks and pathway 

 
In the case of B-cells, a network of transcription 

factors, including EBF1, PU.1, E2A, Pax5, TCF1, and 

Foxo1, regulates the differentiation of progenitor cells into 

pro-B-cells (Decker et al., 2009; Medvedovic et al., 2011; 

Boller and Grosschedl, 2014) as well as the rearrangement 

of immunoglobulin heavy chain loci in B-cells (Liu et al., 

2003; Dengler et al., 2008). Pax5 and EBF1 play crucial 

roles in suppressing the T-cell lineage genes Notch1 and 

GATA3, respectively, which are the key biochemical 

regulatory factors contributing to T-cell fate commitment 

(Delogu et al., 2006; Nechanitzky et al., 2013; Delpoux et 

al., 2021). Conditional knockout of Pax5 in mature B-cells 

leads to their conversion into a T-cell-like state, indicating 

the importance of Pax5 in maintaining B-cell identity 

(Cobaleda et al., 2007).  

In pro-B-cells, Pax5 deficiency can also lead to the 

deviation of B-cell lineage toward alternative lineage 

commitments, such as myeloid cell, dendritic cell, or even 

T-cell fates under the influence of other lineage gene 

signals (Nutt et al., 1999; Rolink et al., 1999; Mikkola et 

al., 2002). Moreover, EBF1 is a key mediator of B 

lymphopoiesis (Lin and Grosschedl, 1995; Zandi et al., 

2008). It has been shown to rescue B-cell fate commitment 

even in the absence of E2A or Pax5 in knockout mice 

(Seet et al., 2004; Zandi et al., 2012). EBF1 can also 

restore the activity of the Pu.1 transcription factor in Pu.1-

deficient multipotent progenitor cells, further confirming 

its importance in the differentiation of progenitor cells into 

B-cells (Medina et al., 2004). Several studies have shown 

that a positive feedback loop exists between Pax5 and 

EBF1, revealing the importance of Pax5 in maintaining 

EBF1 levels for the proper regulation of B-cell 

commitment of progenitor cells (Roessler et al., 2007; 

Decker et al., 2009; Haniuda et al., 2020). 
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A combination of transcription factor networks 

orchestrates gene expression in different types of cells to 

maintain their identity throughout the sequential signals of 

activation and repression. Consequently, determining an 

extensive view of gene expression will aid the elucidation 

of different genes’ biochemical mechanisms and levels 

during immune cell development. Biochemical gene 

expression profiling was conducted to characterize avian 

immune lymphocyte development using the two primary 

immune tissues (the thymus and bursa of Fabricius) across 

different stages of chick development.  

The current study aimed to comprehensively 

investigate the regulatory mechanisms and biochemical 

pathways governing the differentiation and maturation of 

pluripotent HSCs into various blood cell lineages and their 

subsequent commitment to T-cell and B-cell lineages. 

Through a profile analysis of the network of transcription 

factors involved in this process, to enhance the 

understanding of the molecular events that underlie avian 

immune cell development. 

 

MATERIALS AND METHODS 

 

Ethical approval 

This study was performed and carried out following 

the Faculty of Agriculture, Cairo University, Committee of 

Animal and Poultry Production welfare treatment, and 

complied with relevant legislation of the Ministry of 

Agriculture in Egypt on animal ethics and welfare (Decree 

No. 27 (1967).  

 

Animals  

A total of 24 Ross 308 broiler chickens were used in 

this study from February to March 2020. All experiments 

were carried out following the Faculty of Agriculture 

Cairo University’s intuitional approved protocols. The 

thymus and bursa of Fabricius were collected from the 

sacrifice of four chickens at each of the six crucial time 

points during the development of T- and B-cells 

maturation across two embryonic ages (days 15 and 18) 

and four post-hatches days (days 3, 7, 14, and 28), snap 

frozen in liquid nitrogen, and stored at -80°C until further 

analysis. T- and B-cells were further isolated from six 

Ross 308 embryos at 15 and 18 days of embryonic 

development to validate the gene expression in the sorted 

cells. The thymus and bursa of Fabricius were collected at 

two-time intervals, three at 15 embryonic days (E15) and 

the other three at 18 embryonic days (E18). Both the 

thymus and bursa of Fabricius were directly used for cell 

isolation to further assess the gene expression in the sorted 

cells compared to the whole organs for the Ross 308 avian 

breed thymus and burse.  
 

RNA isolation and mRNA library construction 

Total RNA was isolated from the 24 thymus and 24 

bursa of Fabricius samples. The 6 (3 E15 and 3 E18) 

sorted B-cell, and the 6 (3 E15 and 3 E18) sorted T-cells 

samples were processed using TRI Reagent® RNA 

Isolation Reagent (Sigma, St. Louis, MO, USA) according 

to the manufacturer’s instructions, then subjected to a 

DNase treatment using a TURBO DNA-free™ Kit (Life 

Technologies, USA). RNA quality was assessed with an 

RNA 6000 Nano Assay kit and the Model 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA, 

USA). An RNA integrity number (RIN) of greater than 9.0 

was observed for all samples.  
 

Semi-quantitative real-time PCR analysis for the 

selected mRNAs 

First-strand complementary DNA (cDNA) was 

synthesized from 1 µg of DNaseI-treated total RNA from 

24 thymus samples and 24 bursa of Fabricius samples as 

well as 12 samples of sorted T- and B-cells samples (6 

samples from each cell type) using a Miscript II RT kit 

(Qiagen) following the manufacturer’s instructions. Real-

time PCR reactions were carried out in duplicate using the 

primer sets in Table 1 (Ye et al., 2012).  

 

Table 1. Semi-quantitative real-time PCR primers for 

mRNA expression generated using Primer-BLAST 

developed at NCBI for thymus and bursa of Fabricius of 

broiler chickens 
Gene Name Primer Sequence 

GATA3-F TCTACTACAAGCTGCACAATA 

GATA3-R TCTCATTTTGAGACCGTAAG 

Pax5-F TCCTGTTTCCTTCCACCGAC 

Pax5-R AGCTGCCTGGAGATGTCGCA 

ENO1-F CGGAGCGGTGTTCAAGATGT 

ENO1-R CCCAAGTACAGGTCAGCCAG 

Cd3e-F ATCCACCCCATAGCCCTTCT 

Cd3e-R TGAAACGGCACCAGCAAATG 

Cxcr4-F CCCTTGCGTTCTTCCATTGC 

Cxcr4-R AACCACTTGTCCACAGGACC 

Cd4-F TGGAACCTGGATGTGTCACG 

Cd4-R AACATGAGCTTCCTCCACGG 

IRF4-F ATCCCCCTACCTGGAAGACC 

IRF4-R CGGGGCAAATTCTCTCCAGT 

Ptprc-F CTTCTCTGCTGGAGGCGAAA 

Ptprc-R CAAAGGTGGAGACCACTCCC 

Cd81-F AGCTGGAATCTGGGGGTTTG 

Cd81-R TCCATCTCCTCGGGACACAT 
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For mRNA expression analysis, each reaction 

contained 10 ng of cDNA, 500 nM of the forward primer, 

and 1× iQ SYBR green supermix (Bio-Rad, Hercules, CA, 

USA). PCR was performed using the cycling conditions 

of 95°C for 15 minutes followed by 40 cycles of  (95°C 

for 10 seconds and 60°C for 20 seconds) using a MyiQ 

Real-Time PCR detection System (Bio-Rad, USA). 

Melting curve analysis was assessed to determine 

amplification specificity for each mRNA. Normalization 

was conducted using the expression of the GAPDH 

housekeeping gene (Huitorel and Pantaloni. 1985). The 

threshold cycle (Ct) values were transformed to a 

relative expression in arbitrary units by the 2
−ΔΔCt

 method 

(Livak and Schmittgen, 2001).  

 

Isolation of T- and B-cells  

T and B lymphocytes were purified from the whole 

thymus and bursa of Fabricius, respectively, from three 

embryos at two embryonic ages (E15 and E18). Mouse 

anti-chicken CD3 and mouse anti-chicken Bu-1 antibodies 

(Southern Biotech, USA) were used for sorting T-cells and 

B-cells, respectively. Tissues were mechanically 

disrupted, passed through a 70µm nylon mesh cell strainer 

(BD Biosciences, USA), and washed three times with 

phosphate-buffered saline (PBS). The isolated cells were 

mixed with 1µg/ml anti-CD3-conjugated phycoerythrin 

(PE) and anti-Bu1a-conjugated Fluorescein Isothiocyanate 

(FITC), respectively, and incubated for 15 minutes at 

room temperature. An Easysep positive selection kit 

(Stemcell Technologies, USA) was used to isolate T-cells 

and B-cells according to the manufacturer’s protocol. 

Briefly, 100µl/ml of the Easysep fluorescein 

isothiocyanate (FITC) or phycoerythrin (PE) positive 

selection cocktail was added to antibody-bound cells and 

incubated for 15 minutes at room temperature. Then, 50 

µl/ml of the magnetic nanoparticles’ beads were mixed 

with the cells and incubated for an additional 10 minutes. 

The tube was placed on the Easysep magnet for 5 minutes. 

Negative cells were aspirated, and the remaining cells 

were washed three times with a washing buffer and 

resuspended in a resuspension buffer (Stemcell 

Technologies, USA) with 1% FBS. A group of unsorted 

cells was treated with 1µg/ml of the isotype negative 

control IgG1 conjugated with either FITC or PE to set the 

gates accordingly.  

 

Flow cytometric analysis 

Phenotyping of the CD3+ or Bu1a+ cells was 

detected and sorted using a Beckman Coulter flow 

cytometry machine (USA), and Cell Lab Quanta SC 

analysis was utilized to assess the sorted cell population 

using an electronic volume of 2.60 and 7.20 side scatter 

value.  

 

Statistical analysis 

Relative fold change in expression and significant 

differences across development stages and between tissues 

were determined using Student’s t-test (SPSS version 26, 

USA). 

 

RESULTS 

 

Functional and pathway analysis for the selected 

mRNAs 

To provide a further assessment of the potential roles 

of these differentially expressed mRNAs across 

development in the avian immune organs, functional 

analysis using the DAVID 6.7 algorithm (Huang et al., 

2008) was performed (Table 2). CD81, PrKcd, ENO1, 

IFNAR1, and IRF4 were identified as potential genes 

involved in B-cell proliferation, while CD4, CD3e, Cxcr4, 

and IL2ra were identified as T-cell differentiation and 

proliferation genes. Following a study by Franceschini et 

al. (2013), a group of these genes known to be involved in 

the development, proliferation, and/or differentiation of 

either T-cells or B-cells was selected for further analysis 

using the STRING v9.1 database (Figure 6). This analysis 

revealed a direct interaction between EBF1 and Pax5, with 

both being actively regulated by PU.1 (SPI1), a member of 

the ETS family of transcription factors. SPI1 could also 

repress GATA3 expression. In turn, IRF4 could directly 

affect the expression of SPI1. Cxcr4, Ptprc, CD44, and 

CD3e were found to interact with CD4 which can activate 

their expression.  
 

Table 2. mRNA functional annotation (DAVID) of the 

selected gene expressed in thymus and bursa of Fabricius 

development of broiler chickens 
Functional 

classification 

Gene 

symbol  
Gene description  

B-Cell 
Proliferation 

CD81 Target Of Antiproliferative Antibody 

Prkcd Protein kinase C, delta 

ENO1 Enolase 1,  Alpha 

IFNAR1 
interferon (alpha, beta, and omega) 

receptor 1 

SOCS3 Suppressor Of Cytokine Signaling 3 

IRF-4 Interferon Regulatory Factor 4 

T-Cell 

Differentiation 

CD4 
membrane glycoprotein of T 
lymphocytes 

Nos2 Nitric Oxide Synthase 2, Inducible 

CD3e 
CD3e molecule, epsilon (CD3-TCR 

complex) 

T-Cell 

Proliferation 

Cxcr4 Chemokine (C-X-C motif) receptor 4 

Il2ra Interleukin 2 Receptor, Alpha 
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Figure 2. Pathway analysis of genes influencing the differentiation and proliferation of T-cells and B-cells in broiler chickens 

 
Sorting B-cells and T-cells 

T-cells and B-cells were purified from the thymus 

and bursa of Fabricius, respectively, using the EasySep 

system (Stemcell Technologies, USA) for subsequent gene 

expression analysis. In the sorted B cells, approximately 

81.27% and 83.58% of the B-cell population expressing 

the Bu-1a surface marker were successfully recovered 

from the E15 and E18 in the bursa of Fabricius tissues, 

respectively (Figure 3). Similarly, approximately 77.45% 

and 74.36% of the cells expressing CD3e surface marker 

were successfully harvested from the E15 and E18 in 

thymus tissue, respectively (Figure 4).     

 

Differences in gene expression in purified T-cell 

and B-cell populations 

The expression of a selected set of differentially 

expressed genes was further assessed in sorted T-cells and 

B-cells, using bio rad real-time PCR (USA, RT-PCR) 

analysis (Figure 5). The expression of GATA3, CD3e, 

CD4, and Ptprc was high in the T-cell population at both 

E15 and E18, compared to B-cells at the same time points. 

Both Pax5 and CD81 were expressed more in B-cells, 

compared to T-cells. ENO1 and IRF4 were expressed 

more with a ~2 fold and a ~5 fold increase, respectively, at 

E15 in T-cells compared to B-cells, while at E18, their 

expression increased with ~3 and ~7 fold changes in B-

cells, compared to T-cells. The semi-quantitative real-time 

PCR analysis was conducted. Ross 308 broiler chickens 

were used to study the thymus and the bursa of Fabricius 

across two embryonic ages (E15 and E18) and four post-

hatch ages (D3, D7, D14, and D28). The results of 

functional gene category annotations revealed dynamic 

expression patterns of crucial biochemical transcription 

factors, cytokines, chemokines, cell surface markers, and 

signal molecules during chicken thymus and bursa of 

Fabricius development, reflecting the dynamic changes 

occurring in cell populations. Notably, the expression of 

the Notch1 receptor and its ligand Delta-like1 (Dll1) 

showed an increasing trend in both tissues at later stages, 

suggesting the continuous requirement of the Notch 

signaling pathway for maintaining the T-cell lineage 

during chick development. The observed changes in the 

expression  of various biochemical genes during different 

stages of avian immune development will provide insights 

into the underlying molecular processes and regulatory 

networks involved in immune cell maturation and 

differentiation. 
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Figure 3. Flow cytometry analysis of sorted B-cells from whole bursa of Fabricius of broiler chickens using stem cell 

technology, magnetic beads and Bu-1a conjugated FITC antibody at two embryonic stages (E15 and E18) 

 

 
Figure 4. Flow cytometry analysis of sorted T-cells from the whole thymus of broiler chickens using stem cell technology 

magnetic beads and CD3 conjugated PE antibody at two embryonic stages (E15 and E18) 
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Figure 5. Relative fold change in expression of GATA3, Pax5, ENO1, CD3e, Cxcr4, CD4, IRF4, Ptprc, and CD81 in sorted T-

cells from thymus of broiler chickens relative to their expression in sorted B-cells lymphocytes from bursa of Fabricius of 

broiler chickens at two embryonic stages (E15 and E18) using quantitative real-time PCR 

 

 
 

DISCUSSION  

 

Semi-quantitative real-time PCR analysis was used to 

identify global expression patterns across developmental 

stages in the key immune organs of avian, the thymus, and 

the bursa of Fabricius, which represent major repertoires 

of T- and B-cells, respectively. Changes in gene 

expression during lymphocyte and immune organ 

development were profiled from embryonic stages (E15 

and E18) to post-hatched stages (D3, D7, D14, and D28). 

CD3e and GATA3 (Figure 6) were highly expressed in 

both thymus and sorted T-cells (Figure 5), compared to the 

bursa of Fabricius and sorted B-cells. Other genes, such as 

Pax5 and EBF1 ( 

Figure 7), were highly expressed in the bursa of Fabricius 

and sorted B-cells ( 

Figure 5), compared to their expression in the thymus or 

sorted T-cells. T-cells development is influenced by Notch 

signaling, which acts as a positive regulator of GATA-3 

and TCF-1 expression to enhance T-cell proliferation and 

survival (Sambandam et al., 2005; Hozumi et al., 2008). 

GATA-3 expression levels significantly decreased by D28 

of development, compared to E15 (Figure 6). GATA-3 

exerts a dose-dependent effect on T-cell lineages, as high 

levels of GATA-3 expression can suppress T-cell 

differentiation (Scripture-Adams et al., 2014). This 

suppression occurs by inhibiting IL7r and TCH-1, 

especially when Notch signaling is blocked (Rothenberg 

and Scripture-Adams, 2008; Scripture-Adams et al., 

2014). GATA-3 can also alter precursor cell fate, leading to 

mast cell differentiation (Taghon et al., 2007).  

The functional and pathway analysis (Table 1 and 

Figure 6) suggest that interaction between T- and B-cell 

lineage genes may help maintain specific cell fates. Pu.1 

(SPI1) is a known member of the ETS family of 

transcription factors and has a dose-dependent synergistic 

effect on B and T lymphocytes binding from CLPs 

(Anderson et al., 2002; Back et al., 2005; Nutt et al., 2005; 

Carotta et al., 2014). The B-cell maturation requires high 

levels of PU.1 (SPI1) to maintain B-cell development, 

whereas, in T-cells, PU.1 (SPI1) expression increases 

GATA-3  levels during the early stages of T-cell 

development to maintain the CLPs commitment to T-cell 

fate (Rothenberg and Scripture-Adams, 2008; Real and 

Rothenberg, 2013). EBF1 and Pax5, two key regulators of 

B-cell development, are critical for mediating and 

R
el

at
iv

e 
fo

ld
 c

h
a
n

g
e
 



J. World Poult. Res., 14(1): 30-40, 2024 

 

37 

maintaining B-cell fate under restricted conditions via IL-

7R signaling during the early stages of CLP commitment 

(Åhsberg et al., 2013). A positive feedback interaction 

between EBF1 and Pax5 (Figure 7) blocks B-cell lineage 

differentiation and development and maintains B-cell 

identity (Decker et al., 2009; Lin et al., 2010; Mansson et 

al., 2012). 
In the present study, the expression of EBF1 and 

Pax5 (Figure 7) gradually increased, reaching their highest 

expression in the bursa of Fabricius (B-lymphocyte 

repertoire) at D28 and D14, respectively. The role of Pax5 

in the commitment of hematopoietic cells to B-cell fate is 

elucidated in a study using Pax5-deficient pro B-cells, 

which cannot fully commit to B-cells. However, these 

cells can maintain the same level of B-lineage gene 

expression if they are kept in a rich media with IL-7 

(Kikuchi et al., 2008). These pro-B-cells with knocked-out 

Pax5 can switch to myeloid cell and dendritic cell fates 

upon removal of IL-7 (Dias et al., 2005; Kikuchi et al., 

2008) and if they are introduced to Notch signals they can 

deviate toward a T-cell fate (Nutt et al., 1999; Rolink et 

al., 1999). These studies illustrate the effect of Pax5 in 

repressing Notch signaling to shut down T-cell lineage 

genes and maintain B-cell fates (Souabni et al., 2002). 

Furthermore, knockout Pax5 in B-cell precursors can 

inhibit T-cell development completely in the presence of 

activated EBF1 (Pongubala et al., 2008). While EBF1-

deficient pro-B-cells with normal expression of Pax5 can 

shift toward the T-cell pathway (Banerjee et al., 2013; 

Nechanitzky et al., 2013; Turner et al., 2020).  

The interaction between the network of transcription 

factors outlined above contributes to determining immune 

cell fate. However, the diverse combinations of 

transcription factors and their dose-dependent effect 

leading to the activation or repression of certain cell types 

make it more important to profile their expression during 

different stages of development in immune tissues and in 

purified immune cell populations (Figure 5). More 

genome-wide studies need to be conducted to clarify these 

factors’ functional mechanisms and their involvement 

during development. Moreover, the expression profile data 

can reveal the global effect of these factors and determine 

the relationship between them and other external signals. 

These results enrich the understanding of the expression of 

different key regulatory elements across the 

developmental stages in two of the primary avian immune 

organs (thymus and bursa of Fabricius) as well as sorted 

T- and B-cells. The findings further the understanding of 

the general gene expression profiles during vertebrate 

immune development and reveal a clearer picture of cell 

fate commitments during avian immune cell development.  

 

 
 

Figure 6. Expression of T-cell lineage genes; GATA3, 

CD3E identified in the bursa of Fabricius and thymus of 

broiler chickens throughout development, during the 

A study showed that EBF1 blocks T-cell lineage 

genes by directly binding to TCF-1 as well as two sites 

upstream of the transcriptional start site of GATA-3, 

leading to the repression of those genes critical in the 

determination of T-cell fate (Banerjee et al., 2013). 

Together, these studies indicate the vital roles of both 

EBF1 and Pax5 in determining B-cell precursor fate by 

acting as negative regulators for T-cell lineage genes to 

prevent the progenitor cells from deviating toward the T-

cell pathway (Nutt et al., 1999; Rolink et al., 1999; Zandi 

et al., 2008; Nechanitzky et al., 2013). In this study, the

 expression of EBF1 was significantly higher at E15 

(Figure 7) in the thymus, compared to the other five stages 

of development (E18, D3, D7, D14, and D28), suggesting 

it may also contribute to adjusting the level of GATA-3 in 

the thymus. 
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embryonic stage (E15 and E 18) and the post-hatch days 

(D3, D7, D14, and D28). 

 
Figure 7. Expression of B-cell lineage genes; Pax5 and 

EBF1 identified in the bursa of Fabricius and thymus of 

broiler chickens throughout development, during the 

embryonic stage (E15 and E 18) and the post-hatch days 

(D3, D7, D14, and D28). 
 

 

CONCLUSION  

 

The results indicated that regulatory elements (EBF1, 

Pax5, GATA3, and TCF1) play critical roles in the 

development of the avian immune system, exhibiting 

dynamic expression patterns throughout the maturation 

stages. These conserved functions suggest their 

importance in controlling the T- and B-cell development 

across species. The results also highlighted the role of 

regulatory elements in avian lymphocyte maturation and 

lineage coupling and their importance in biochemical 

regulation. This knowledge has implications for the study 

of human immune-related diseases and the development of 

therapeutic strategies. Further research efforts will 

improve the understanding of the mechanisms by which 

these factors control lineage linkage in chickens and 

interact with other transcriptional regulators. Further 

studies are required to understand the transcriptional 

regulatory networks and post-transcriptional regulation of 

these genes to build a solid understanding of the 

lymphocyte developmental programs in birds.  
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