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ABSTRACT 
Chickens are sensitive to environmental challenges caused by temperature. The current study aimed to 

determine the effects of heat manipulation during embryonic development on the physiological responses of 

Goliath chickens. A total of 2000 hatching eggs from 48-week-old breeders were weighed, numbered, and 

randomly distributed equally into 4 incubators. Each incubator received 500 eggs (4 replicates of 125 eggs 

each). Eggs in two of the incubators were rotated hourly at a 45° angle and maintained at 37.8°C and 60% 

relative humidity (T0 groups). Between embryonic days (ED) 10 and 18 of incubation, the eggs from the other 

two incubators were heated to 38.5°C for 6 hours per day (T1 groups). The eggs were reweighed and candled, 

and viable eggs were moved to the hatching baskets at ED 18 of incubation. Hatching eggs were examined 

individually for hatching events every three hours during the final three days of incubation. On day 21, blood 

samples were collected from 12 chicks per group for hormonal and biochemical analyses. The evaluated blood 

parameters included Triiodothyronine (T3), T4 (thyroxine), cortisol, uric acid, lactate dehydrogenase, and total 

protein. At hatch, chicks were weighed and their quality (survival after hatching and performance standards) 

was evaluated. Data were collected on embryonic development, hatching window, hatching events, 

biochemical parameters, and hormonal concentrations. Results indicated that hatchability, chick’s weight, Tri-

iodothyronine, and corticosterone were higher in the T1 group, compared to the control group. At hatch on day 

21, the pipping muscle of chicks in the treated group (T1) was significantly heavier than that of the control 

group, while the embryonic mortality rate was significantly higher in the T0 group. In conclusion, applying 

heat treatment for 6 hours at 38.5°C from ED10-ED18 of embryogenesis increased significantly the hatching 

rate, the pipping muscle, and the chick’s weight in this study. 
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INTRODUCTION 

 

Poultry farming is one of the fastest-growing livestock 

industries in tropical nations. This expansion is caused by 

the prominent position that poultry products play on 

household menus, the absence of religious restrictions, 

their high nutritious value, and the ease of production 

(Jaovelo, 2007). Poultry meat is particularly popular since 

it is low in fat, an excellent source of protein, and unlike 

red meat, it does not raise the risk of certain diseases like 

metabolic or cardiovascular disorders (Pan et al., 2011; 

Jilo and Hasan, 2022; Connolly and Campbell, 2023).  

Stress is the collection of responses to any external 

demand or challenge that causes the flock of hens to adjust 

to an unusual occurrence (Khan and Liu, 2012; Oke et al., 

2022; Onagbesan et al., 2023). Providing ideal 

environmental conditions for chicken development, 

growth, and production is a prerequisite for poultry 

farming to operate at its peak efficiency (Muchacka et al., 

2012; Oke et al.,  2021). Heat stress occurs when an 

animal generates more internal heat than it can dissipate 

externally (Elizabeth et al., 2023). Chickens are more 

sensitive to environmental challenges posed by 
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temperature, particularly heat stress (Nawab et al., 2018). 

Heat stress is a significant factor contributing to financial 

losses in the poultry sector (Lin et al., 2006; Lu et al., 

2007). It increases the mortality rate and reduces growth 

performance (Kumar et al., 2021; Belhadj et al., 2016). 

Compared to domestic chickens, broilers are more 

vulnerable to high temperatures (Gous and Morris, 2005), 

although the reaction to heat differs from one chicken to 

another according to their genetic upbringing (Altan et al., 

2003; Star et al., 2008; Felver-Gant et al., 2012). In 

addition to the fast-growing strains, heat stress negatively 

affects the slow-growing strains (Tan et al., 2010; 

Soleimani et al., 2011; Rimoldi et al., 2015). 

During the hottest months, the appropriate 

microclimatic parameters are often exceeded, disrupting 

the homeostasis of the chickens' internal environment. 

Consequently, the management of poultry and the 

equipment used in hot weather must be reevaluated to 

reduce heat stress (Akşit et al., 2006; Kpomasse et al., 

2023). 

Perinatal or postnatal acclimatization through thermal 

manipulation is one way to help chickens adjust to climate 

change and enhance their growth performance (Collin et 

al., 2007; Yalçin et al., 2008; Meteyake et al., 2020). 

Growth performances, metabolic rate physiological 

response, and hatching of poikilothermic embryos can be 

affected by variations of temperature from the standard 

incubation temperatures range of 37 to 37.5°C, (Tazawa et 

al., 2004; Black and Burggren, 2004). Lowering the 

incubation temperature increases incubation time and 

inhibits embryo growth (Black and Burggren, 2004), while 

elevated temperatures accelerate embryo growth and 

development (Willemsen et al., 2010; Narinç et al., 2016). 

Embryo weights were lower on embryonic day (ED) 18 

when the eggs were exposed to a temperature of 39.6°C 

for 6 hours daily from ED10 to ED18 of incubation, even 

though the weights were similar to the control (Yalçin et 

al., 2005) or a bit lower than the control group (Yalçin et 

al., 2005). Because epigenetic adaptation to elevated or 

low post-hatch environmental temperatures is induced 

during the pre-hatch period, lower or higher incubation 

temperatures affect post-hatch thermoregulation systems 

(Nichelmann and Tzschentke, 2002; Al Amaz et al., 2024; 

Iraqi et al., 2024). Several studies have been conducted on 

the acclimatization of fast-growing broilers, but fewer 

studies have been carried out on slow-growing broilers, 

especially on Goliath chicken embryos which are also 

known to be slow-growing strains (Madougou, 2023). 

Hence, this study aimed to assess the physiological 

reactions of Goliath chicken embryos subjected to 

embryonic thermal manipulations from day 10 of 

embryogenesis to day 18 under tropical climate 

conditions. 

 

MATERIALS AND METHODS 

 

Ethical approval 

The current study was performed with strict adherence 

to the University of Lome/Togo's Guide for the Care and 

Use of Experimental Animals (008/2021/BC-BPA/FDS-

UL). 

 

Experimental design  

This experiment was carried out at the Regional 

Centre of Excellence for Poultry Science (CERSA) 

experimental unit at the University of Lomé. 

A total of 2000 Goliath hatching eggs from 48-week-

old breeders stored for 7 days were used. The eggs were 

purchased from a production farm in the Republic of 

Benin. These eggs were weighed, numbered, and 

incubated until day 10 of incubation in the same incubator 

(© Petersime Incubator, Belgium) at the appropriate 

temperatures and humidity conditions (37.8°C, 60%). On 

day 10 of incubation, the eggs were divided randomly into 

four groups (500 eggs each) and incubated in four 

different incubators of the same model (PasReform, 

Zeddam, SmartProCombi model, Netherlands). Each 

incubator had 4 replicates of 125 eggs. From ED10 to 

ED18, the eggs from two incubators (T1 groups) were 

subjected to 38.5°C and relative humidity (RH) of 60% for 

six hours daily, whereas the eggs from the other two 

incubators (T0 groups) were maintained at standard 

conditions. Eggs from all treated groups were incubated in 

complete darkness.  On day 18 of incubation, the eggs 

were candled, and the fertile ones were weighed and 

conveyed in the hatcher for three days of hatching (until 

day 21 of incubation; Yalçin et al., 2008)  

 

   Egg and embryo weights 

Before the setting of eggs and at ED18, egg weight 

(EWT) was recorded. These weights were used to 

determine the egg weight loss (EWTL) at ED18 of 

incubation using Formula 1. 

Egg weight loss (%) =
𝐸𝑊𝑇(𝐸𝐷0)−𝐸𝑊𝑇(𝐸𝐷18)

𝐸𝐷0
 x 100      

(Formula 1)  

Where ED 0 indicates the day the eggs were placed in 

the incubator.  

At ED10, ED14, and ED18  12 eggs/treatment were 

broken at each embryonic day to measure embryo weights. 
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 Hatching event, embryonic mortality, 

hatchability, and chick quality 

Every three hours starting on day 19 of incubation, the 

time of internal pipping (IP), external pipping (EP), and 

hatching for each egg was recorded. The number of chicks 

hatched was counted. To determine the early and late 

embryonic mortalities, the unhatched eggs were broken 

and examined macroscopically at the end of incubation. 

Deaths before the 18th day of incubation were classified as 

early death. Deaths that happened at IP, during IP and EP, 

or when the embryo was positioned incorrectly were 

considered late embryonic mortality. The data collected 

were used to determine the spread of hatch according to 

various treatments, the entire incubation period (between 

setting and hatching), the hatchability (Formula 2), and the 

embryonic mortalities (Formula 3). The quality of the 

chicks at the hatch was evaluated using the Tona scoring 

system (Tona et al., 2004). The major objective of this 

method was to score physical attributes, such as response, 

appearance, down and eyes, legs conformation, navel area, 

yolk sac, and remaining membranes and yolk. 

The total of the ratings given to each quality 

parameter was used to create the chicks’ quality score : 

Hatchability (%) =
Total number of Hatched eggs

Total number of Fertile Eggs 
 x 100       

(Formula 2) 

Organs, day-old chick body weights, and cloaca 

temperature at hatch 

On day 21 after hatching, the weights of the liver, 

heart, and pipping muscles were calculated by cervical 

dislocation on a sample of 12 chicks per treatment. These 

data were used to determine body weights and the absolute 

weights of the heart and liver. An electronic thermometer 

inserted about 3 cm into the colon was used to record the 

cloaca temperatures of the same chicks at hatch. 

Mortality (%) =
Total number of dead embryos

Total number of Fertile Eggs 
 x 100    

(Formula 3) 

 

Blood biochemical traits, hematology, and 

hormonal analysis 

At hatch (day 21), blood samples were collected from 

12 chicks via the wing vein using insulin syringes (1CC), 

to collect blood samples (1ml) into anti-coagulant-free 

tubes. These samples were used to evaluate uric acid, 

Lactate Dehydrogenase (LDH), total proteins, 

triiodothyronine (T3), thyroxine (T4), and corticosterone. 

In preparation for analysis, serum samples (obtained from 

centrifuged blood (15000g for 15 min) were frozen and 

kept at -20°C. Using the Biolabo kit (France), a 

spectrophotometer was used to quantify proteins, uric acid, 

and LDH. ELFA equipment and the Vidas kit were used to 

measure the serum T3 and T4 concentrations. Utilizing 

Cobas equipment and the Eclia technique, corticosterone 

concentration was determined (Repetto et al., 2017). The 

same chickens’ blood was also drawn into heparinized 

tubes, where blood cells (Lymphocytes and Heterophils) 

were identified.   

 

Statistical analysis 

Data were analyzed using R software (R Core Team 

Development, 2023; Version 4.3.1). Descriptive statistics, 

including the Shapiro-Wilk normality test, means and 

standard errors, were calculated for the main quantitative 

variables. For variables with a normal distribution, the 

Student's parametric test was applied to compare the 

means between the treatment groups. On the other hand, 

the non-parametric Wilcoxon test was employed for 

variables that did not have a normal distribution. To 

compare the proportions between the various groups, the 

Chi-square test was also performed. The results were 

presented as the mean ± the Standard Deviation (SD). The 

significance rate was 5%. 

 

RESULTS AND DISCUSSION  

 

Embryonic development  

Figure 1 shows the impact of thermal manipulation on 

embryonic development from day 10 to day 18 of 

incubation. The heat treatment did not affect the 

development of embryos (p > 0.05). These results confirm 

those reported by Al-Zghoul et al. (2019) but contradict 

those reported by Horowitz  (1986), indicating that heat 

treatments had an instantaneous impact on the 

development of embryos, resulting in slowed growth by 

day 14. The heat treatment, which in their case reached 

39.6°C, may have contributed to this outcome. 

 

Hatching window 

The spread of the hatch in relation to various heat 

treatments is depicted in Figure 2. Chicks in the T1 group 

began hatching three hours earlier than those in the T0 

group. The first chicks in the T1 group were observed at 

451 hours (day 19 of incubation), with the peak hatch 

occurring at 472 hours (day 20 of incubation). In contrast, 

chicks in the T0 group started hatching at 454 hours (day 

19 of incubation), reaching their peak at 478 hours (day 20 

of incubation). The T0 group exhibited a shorter hatching 

window compared to the T1 group.  
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Figure 1. Effects of thermal manipulation on embryonic 

development (gr) of Goliath chickens from day 10 to day 

18 of embryogenesis for 6 hours at 38.5°C. T0: Control 

group, T1: Thermal manipulated group 

 

 
Figure 2. Effect of thermal manipulation on the hatching 

window of Goliath chickens from day 10 to day 18 of 

embryogenesis for 6 hours at 38.5°C. T0: Control group, T1: 

Thermal manipulated group 

 

Internal pipping, external pipping,  hatching 

durations, and cloacal temperature   

 Table 1 shows the effect of heat treatment on IP, EP, 

and hatching durations. Raising the temperature to 38.5 for 

6 hours from ED10 to ED18 affected the duration of IP (p 

< 0.05), EP (p < 0.05), and cloaca temperature (p < 0.001). 

The difference was not significant between the two groups 

for the duration of hatching (p > 0.05).  Embryos from the 

treated batch started the IP, EP, and hatching earlier than 

those in the control group (T0). The quality of chicks 

(surviving hatching, and performance standards) at hatch 

was similar in T0 and T1 groups (p > 0.05).  The 

significant difference in the duration of IP and EP between 

the two treatment groups might be due to the fact that 

embryos use more oxygen when the temperature is higher. 

Because of that increased demand, the embryos must 

switch to pulmonary respiration in order to meet their 

oxygen requirements. This rise in oxygen demand may 

encourage the embryos to pip and hatch earlier (Molenaar 

et al., 2010). This result confirms those reported by 

Piestun et al. (2013) but contradicts those reported by 

Willemsen et al. (2010) who found that high heat 

treatment delayed the hatching process (IP, EP, and hatch) 

in the treated group.  Willemsen et al. (2010) applied a 

heat treatment of 40.6°C from day 16 of incubation to day 

18.5 of incubation. This incubation period is very critical 

for the development of embryos (Kpodo and Proszkowiec-

Weglarz, 2023) and could explain why the results are 

contradictory. In his study, the thermal manipulation was 

applied during the late embryonic development. The 

higher cloaca temperature in the T1 group (p < 0.05) may 

be due to increased thermal manipulation induced by the 

metabolic rate, resulting in higher heat production by the 

chickens. In the event of future chronic heat stress, the 

heat therapy may cause a metabolic and stress response, 

suggesting a potential increase in thermotolerance. These 

results are in line with those found by several authors 

(Narinç et al., 2016; Al-Rukibat et al., 2017; Al-Zghoul, 

2018; Saleh et al., 2020). These authors applied 

respectively 39.6 °C for 6 hours daily from day 10 to day 

18 of incubation, 38.5°C and 40°C for 6 hours at day 16, 9 

hours at day 17, and 12 hours at day 18 of incubation; 

38.5°C, 39°C, 39.5°C and 40°C for 6 hours from day 12 to 

day 18 of incubation; 39°C for 18 hours daily from day 10 

to day 18 of incubation. They all concluded that thermal 

manipulation improved the thermotolerance of chicks. Al-

Zghoul et al. (2019) added that the dynamics of heat shock 

proteins (HSPs) and heat shock factors (HSF) mRNA 

expression were changed by heat treatment, and this was 

linked to an increased development of thermotolerance.  

 

Table 1. Effects of thermal manipulation on hatching parameters of Goliath chickens from day 10 to day 18 of embryogenesis  

                                                                           Treatments 

Parameters 
T0 T1 p-value 

IP time (h) 450.7 ± 3.14a 446.5 ± 2.87a 0.33 

EP time (h) 461.5 ± 3.14a 457.0 ± 3a 0.33 

Total incubation duration (h) 473.2 ± 3.03a 467.5 ± 3.4a 0.20 

Duration between IP and EP (h) 10.77 ± 0a 10.5 ± 0b 0.03 

Duration between EP and Hatching(h) 11.7 ± 0a 10.5 ± 0b 0.03 

Duration between IP and Hatching (h) 22.47 ± 0a 21 ± 0a 0.34 

Cloacal temperature of chicks (°C) 37.98 ± 0.22b 39.99 ± 0.06a < 0.001 

Tona score 96.55 ± 0.47a 96.02 ± 0.58a 0.74 

IP: Internal pipping, EP: External pipping, h: Hour, P-value: Probability. All results are presented as mean ± SD; a,b Means with different superscripts are 

significantly different in a row, T0: Control group, T1: Thermal manipulated group 
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Weight loss, hatching rate, and mortality rate  

Table 2 shows the results of thermal manipulation on 

weight loss from incubated eggs, hatching rate, and 

mortality. No significant difference was recorded in terms 

of weight loss (p > 0.05) but raising the temperature to 

38.5°C affected the early mortality rate (p < 0.05) and the 

late mortality rate (p < 0.05). Lower, early, and late 

mortality rates were recorded in treatment T1. The 

hatching rate of batch T1 was higher than that of the T0 

group (p < 0.05).  

 

Table 2. Effect of thermal manipulation on weight loss, 

hatching, and mortalities rate of Goliath chickens from day 

10 to day 18 of embryogenesis  

Parameters 

(%) 

Treatments 
p-value 

T0 T1 

Weight loss 13.02a 13.98a 1 

Hatchability 85.43b 89.22a 0.03 

EM 5.6a 4.25b 0.04 

LM 8.87 a 6.35b 0.01 
EM: Early mortality, LM: Late mortality. All results are presented as 

mean ± SD; a,b Means with different superscripts are significantly 

different in a row, T0: Control group, T1: Thermal manipulated group. 

 

The weight of the pipping muscle and the high level 

of T3 (triiodothyronine) in T1 group chicks can be used to 

explain the hatching rates obtained. Chicks’ pipping 

muscles are crucial in the process of hatching. The 

mechanical strength needed for the chick to break the 

eggshell and come out is supplied by the pipping muscles 

(Pulikanti et al., 2010). Heat stress resulted in an increased 

thyroid hormone T3 and corticosterone concentration in 

the T1 group. These hormones play an important role in 

the hatching process, providing the chicks the energy they 

need to hatch. The higher the T3 and T4 concentrations, 

the higher the chicks’ energy level. For the control of 

metabolic processes, T3 and T4 are crucial. They affect 

the turnover of lipids and carbohydrates, protein synthesis, 

and basal metabolic rate. They promote the mobilization 

of energy reserves, such as lipids and proteins, needed to 

sustain energy during the hatching phase. This 

mobilization is crucial if the embryo is to complete the 

hatching process with sufficient energy (Al-Zghoul, 2018). 

 Compared to the chicks in the T0 group, which had a 

lower concentration of T3, the highly active chicks in the 

T1 group hatched earlier. Delayed hatching can cause 

chick mortality within the egg, leading to a lower hatching 

rate. These findings contradict those reported by Al-

Rukibat et al. (2017), who found that thermal 

manipulation did not affect the hatching rate. The 

discrepancies between studies could be due to genetic 

differences. The higher embryonic mortality in the chicks 

of the control batch (T0) could be explained by the low 

weight of the pipping muscle, allowing the chicks to spin 

inside their shells, rip the membrane, and break the shell. 

 

Absolute weight of chicks, heart, liver, and pipping 

muscle 

Table 3 shows the effects of heat treatment on the 

absolute weight of day-old chicks, heart weight, liver 

weight, and pipping muscle weight. The weight of chicks 

in T1 was significantly higher than that of the chicks in the 

T0 group (p < 0.05). The same tendency was observed for 

the pipping muscles (p < 0.05). However, there was no 

difference in the weight of the heart (p > 0.05) and liver (p 

> 0.05). These outcomes (high chicks’ weight and pipping 

muscle in the T1 group) could be explained by the fact that 

high temperatures are known to speed up not only the 

metabolic rate but also the growth and development of 

muscle tissues (Meltzer, 1983). This result confirms the 

findings reported by Piestun et al. (2015). Piestun et al. 

(2015) applied a heat treatment of 39.5°C from day 7 to 

day 16 of incubation for 12 hours. It was concluded that 

the thermal manipulation had a positive effect on embryo 

growth with an improved chick's weight at the hatch.  This 

result can also be explained by the effective use (due to 

accelerated metabolism) of the energy reserves in the egg 

which resulted in body tissue enlargement (Piestun et 

al., 2015). In addition, the heat treatment influenced 

hormone regulation by increasing T3 levels in the T1 

batch. These hormones are like growth hormones. Higher 

levels of T3 can promote the growth of body tissue in 

chicks, leading to larger size at hatch. The results confirm 

those reported by Abuoghaba et al. (2018) and Al-

Rukibat et al. (2017) but contradict those reported by 

Yahav et al. (2004) and Tona et al. (2004), who found that 

a thermal manipulation of 38.5°C applied between ED16 

and 18 for 3 hours did not affect the hatching weight of 

Cobb chicks. This could be explained by the period of 

application and the type of boiler used.  

 

Table 3.  Effect of thermal manipulation on the absolute 

weight of chick, heart, liver, and pipping muscle of 

Goliath chickens from day 10 to day 18 of embryogenesis  

Parameters 
Treatments 

p value 
T0 T1 

Chick (g) 36.03 ± 0.59b 38.26 ± 0.56a < 0.001 

Heart (g) 0.086 ± 0.01a 0.092 ± 0.00a 0.74 

Liver (g) 0.76 ± 0.06a 0.86 ± 0.07a 0.18 

Pipping 

muscle (g) 
0.14 ± 0.02b 0.20 ± 0.03a 0.02 

a,b Means with different superscripts are significantly different in a row; 

All results are presented as mean ± SD, T0: Control group, T1: Thermal 

manipulated group.  
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Relative weight of chicks, heart, liver, and pipping 

muscle 

Table 4 shows the result of heat treatment on the 

relative weight of day-old chicks, heart weight, liver 

weight, and pipping muscle weight. At the setting, the 

weight of the eggs was similar across the treatments (p > 

0.05). The weight of chicks in batch T1 was higher than 

that of the chicks in the T0 group (p < 0.05). The same 

tendency was observed for the weights of the liver (p < 

0.05) and pipping muscles (p < 0.05). However, there was 

no difference in the weight of the heart (p > 0.05). These 

results (high chicks’ weight and pipping muscle in the T1 

group) could be explained by the fact that heat is known to 

accelerate the growth and development of muscle tissues 

as well as the metabolic rate (Meltzer, 1983). This result 

confirms the findings reported by Piestun et al. (2015). In 

addition, there is a positive correlation between the liver’s 

weight and body weight (Hassan, 2009). These results 

contradict those reported by Yalcin et al. (2008) who 

found a lower absolute liver and heart weight under the 

same heat treatment conditions (38.5°C for 6 hours, from 

incubation day 10 to day 18). The difference here could 

probably be due to genetic factors. Cobb500 which is a 

fast-growing broiler was used in their study while in this 

study a slow-growing breed was used. 

 

Table 4.  Effect of thermal manipulation on the relative 

weight of chick, heart, liver, and pipping muscle of 

Goliath chickens from day 10 to day 18 of embryogenesis  

Parameters 
Treatments 

p value 
T0 T1 

Egg’s weight (g) 49.34 ± 0,59a 48.42 ± 0,48a 0.24 

Relative chick 

weight (%) 
73.02 ± 0.01b 79.01 ± 0.00a < 0.001 

Relative heart 

weight (%) 
0.25 ± 0.01a 0.24 ± 0.01a 0.57 

Relative liver 

weight(%) 
1.99 ± 0.01b 2.39 ± 0.01a < 0.001 

Relative pipping 

muscle’weight (%) 
0.39 ± 0.02b 0.52 ± 0.01a < 0.001 

a,b Means with different superscripts are significantly different in a row, 

All results are presented as mean ± SD, T0: Control group, T1: Thermal 

manipulated group. 

 

T3, T4 concentration, corticosterone, and 

heterophils/lymphocytes ratio 

Table 5 shows the effect of high heat treatment on 

stress hormones T3 and T4 and the 

heterophils/lymphocytes H/L ratio. Blood serum T3 was 

higher in group T1 (p < 0.05) and corticosterone 

concentration was also higher in group T1 (p < 0.05), 

compared to the T0 group. The heat treatment did not 

affect the H/L ratio and T4 concentration. Compared to 

T0, the higher blood serum T3 concentration in T1 chicks 

at hatch suggested that less T3 was required for oxidative 

metabolism, which reduced the amount of T3 absorbed by 

the cells and increased the blood serum T3 concentration 

over time. In addition, the increasing metabolic rate is 

known to increase T3 levels in the blood. When there was 

an increase in metabolic rate, the T3 rate also increased in 

the blood. There was no major difference in T4 

concentration since the conversion of T4 to T3 occurred 

more quickly in T1 than in T0 chicks throughout 

embryonic development (Tona et al., 2004). The decrease 

in hepatic Deiodinase (D3) expression may be a 

contributing factor to the rise in blood serum T3 levels. 

The breakdown of T3 by D3 is a significant cause of 

determining serum T3 level, even if the hepatic D3 level 

has not been assessed (Decuypere and Kuhn, 1985; 

Darras et al., 2000). Under the action of D3, the 

conversion of T4 to T3 is reduced, which decreases the 

quantity of T3 in the blood. In addition, the conversion of 

T3 to T2 by D3 directly reduces the concentration of 

active T3 (Maia et al., 2005). High levels of hepatic D3 

show increased conversion of T3 to T2 and T4 to rT3. 

This suggests that blood T3 levels may be reduced as the 

enzyme reduces the amount of active T3. Low hepatic D3 

levels show decreased inactivation of T3 and conversion 

of T4 to rT3. This suggests that blood T3 levels may be 

relatively higher 

 

Table 5. Effect of thermal manipulation on stress 

hormones concentration and H/L ratio of Goliath chickens 

from day 10 to day 18 of embryogenesis  

Parameters 
Treatments 

p value 
T0 T1 

T3 (Pmol/l) 5.54 ± 1.33b 9.98 ± 2.12a 0.02 

T4 (Pmol/l) 7.11 ± 0.87a 5.1 ± 0.13a 0.2 

Corticosterone 

(ng/ml) 
0.40 ± 0.00b 0.54 ± 0.01a < 0.001 

Ratio H/L 6.63a 4.33a 0.42 
a,b Means with different superscripts are significantly different in a row, 

All results are presented as mean ± SD; T3: Triiodothyronine; T4: 

Thyroxine, T0: Control group, T1: Thermal manipulated group. Ratio 

H/L: Heterophils/lymphocytes H/L ratio 

 

Biochemical parameters  

Table 6 shows the effect of heat treatment on 

biochemical parameters. The heat treatment decreased the 

concentration of uric acid (p < 0.05) and increased LDH (p 

< 0.05) in group T1. In addition, there was no difference in 

the protein content. Heat can increase the metabolism of 
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embryos, accelerating the processes of purine degradation 

and the conversion of uric acid into other metabolic 

compounds (Al-Kharusi et al., 2012; Loyau et al., 2016). 

This could explain the lower uric acid levels observed. 

These outcomes confirm those reported by Moraes et al. 

(2003), who also got a reduction in uric acid in heat-

treated batches. Heat has the potential to interfere with 

metabolic processes. In order to generate energy, cells 

might shift to a more anaerobic metabolism, which raises 

the synthesis of lactate, an LDH substrate. 

 

Table 6. Effect of thermal manipulation on biochemical 

parameters of Goliath chickens from day 10 to day 18 of 

embryogenesis  

Parameters 
Treatments 

p value 
T0 T1 

Uric acid (mg/l) 75.81±1.87a 65.98±1.45b 0.02 

Lactate 

Dehydrogenase (UI/L) 
982±1.73b 1260±1.16a < 0.001 

Total protein (g/l) 39.47±7.27a 37.58±6.32a 0.85 
a,b Means with different superscripts are significantly different in a row; 

All results are presented as mean ± SD, T0: Control group, T1: Thermal 

manipulated group. 

 
CONCLUSION  

 

Applying heat treatment for 6 hours at 38.5°C from ED10 

to ED18 of embryogenesis increases the hatching rate, the 

pipping muscle, and the chick’s weight at hatch. 

Moreover, it did not affect the embryonic development 

from ED 10 to ED18. Additional investigation is important 

to clarify the underlying mechanisms and to assess the 

impact of these thermal manipulations on poultry 

production on a larger scale.  
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