Real Time PCR Quantification and Differentiation of both Challenge and Vaccinal Mycoplasma gallisepticums trains Used in Vaccine Quality Control.

Sayed RH, Ahmed HA, Shasha FA and Ali AM.

J. World Poult. Res. 8(3): 50-58; pii: S2322455X1800008-8

ABSTRACT
Mycoplasma gallisepticum is an economically important pathogen of poultry worldwide, causing chronic respiratory disease in chickens and turkeys. Vaccination of poultry with Mycoplasma gallisepticum live vaccines is an approach to reduce susceptibility to infection and to prevent economic losses. The goal of this study was to develop an alternative method for evaluation of live and killed vaccine using quantitative differential real time PCR (rt-PCR) assay. Real time PCR assay was implemented for titration and identification of three types of Mycoplasma gallisepticum (F, ts-11 and field strain). Three groups of chicks were vaccinated by using F-strain, ts-11 and killed vaccine and the forth group was considered control. Challenge test was applied by using Mycoplasma gallisepticum field strain (10^8 CFU) at three weeks post vaccination. Antibody ELISA titers against Mycoplasma gallisepticum were 319, 259 and 1009 for F, t-11 and killed vaccine respectively at 3 weeks post vaccination. The protection rates were 81.5%, 74%, and 66.6% for F-strain, ts-11 and killed vaccine respectively that was determined by air sac lesion scour. Using quantitative differential rt-PCR for necropsied birds at 5 days post challenge 7 days post challenge and 14 days post challenge demonstrated that the F-strain vaccine had ability to prevent shedding of field strain at 14 days post challenge mean while the ts-11 and killed vaccine decreased shedding of field strain from 10^8.1 to 10^5.1 and 10^8.6 to 10^5.8 CFU respectively at 14 days post challenge. In this study, rt-PCR had ability to identify and quantify of two types of vaccines (F and ts-11) and field strain.

Keywords: Mycoplasma, rt-PCR, Vaccine, Poultry

[Full text- PDF] [XML]
In this study, we have investigated the effect of essential oils extracted from five different herbal plants against Escherichia coli and Salmonella spp., which have been isolated directly from infected broiler flocks. Standard Disk-diffusion method, Minimum Inhibitory Concentration (MIC), and Minimum Bactericidal Concentration (MBC) were used to determine the effect of these essential oils on the growth of bacteria. Also, tetracycline was used as a control group. Among essential oils, tea tree oil had the highest antibacterial properties. The maximum inhibition zone in diameter against Escherichia coli were respectively 26.7 and 22.5 mm. These values concern about potential harmful threat to human health and economic losses in the poultry industry. The emergence of antimicrobial resistance and its causal bacteria in poultry industry has led to a need to find safe alternatives for the control of these bacteria. To this end, the use of herbal remedies in poultry has been suggested. Therefore, this study was carried out to evaluate the effect of essential oils extracted from five different herbal plants can be suggested as alternatives to antibiotics for treating infections caused by these bacteria in poultry industry.

Keywords: Essential oil, Herbal plant, Research Paper, Escherichia coli, Salmonella spp.

ABSTRACT
