Advancement in Vaccination of Broiler Chickens with Genotype-Matched Vaccines to Currently Epidemic Newcastle Disease Virus Genotype VII in Egypt.

Amer SAM, Ali MA, Kandeil AM and Kutkat MA.

J. World Poult. Res. 9(3): 117-123, 2019; pii: S2322455X1900015-9

ABSTRACT:
Newcastle disease virus (NDV) outbreaks still occur frequently in Egypt in spite of the heavy implementation of classic NDV vaccines for a long time ago, where NDV genotype VII has become the dominant genotype in Egypt from 2012 until now. Many previous studies have recommended using genotype-matched NDV vaccines against the epidemic virus for providing better protection and minimizing virus shedding. Therefore, the present study evaluated the efficacy of two available live NDV vaccines in Cobb 500 broilers. The group A and B (20 birds each) were vaccinated with live attenuated NDV vaccines genotype VII and II, respectively with double doses at 5 and 19 days of age. Also, group C consisting of 20 unvaccinated birds was studied as a control group. The efficacy of live vaccines was determined using virus challenge test. Hence, all groups were challenged with velogenic NDV genotype VIIId at a dose equivalent to $10^{6.0}$ 50 percent Embryo Infective Dose (EID$_{50}$) via the intramuscular route at 28 days-old. Serum antibodies level was assessed by hemagglutination inhibition test. Moreover, virus shedding was measured by EID$_{50}$. The obtained results indicated that vaccinated birds had similar haemagglutination titers with no significant difference prior challenge. Meanwhile, group A showed significant protection against mortality, as well as a significant reduction in virus shedding 7 days post-challenge compared to Group B. We concluded that live recombinant-genotype VII vaccine homologous to challenge virus could improve the protective efficiency in chicken against NDV compared to live classic genotype II vaccine. It is suggested that the implementation of genotype-matched NDV vaccines confer better protection in commercial broilers vaccination programs.

Key words: Broilers, Genotype-matched vaccine, Genotype VII, Newcastle disease virus
Model Estimation for Longitudinal Bone Growth Based on Age in Male and Female Commercial Broiler Chickens.

Kongpechr S, Sohsuebngarm D and Sukon P.

ABSTRACT:

Longitudinal bone growth is essential to support rapid body growth in commercial broiler chickens. The present study aimed to determine which simple mathematic model is best suitable for explaining the absolute and the relative bone growth in length (expressed as a ratio of bone length to body weight) as a function of age in male and female commercial broiler chickens over the first 35 days of age. A total of 1,800 broiler chickens (900 males and 900 females) of Cobb 500, Ross 308, and Arbor Acres raised in standard commercial broiler houses were randomly selected for this study. Body weight and the lengths of backbones, third toe, shank bone, and keel bone were individually measured in all chickens at 1, 7, 14, 21, 28, and 35 days of age. Regression analysis (with 4 simple mathematical models including linear, logarithmic, inverse, and exponential) was used to find a suitable model for estimating the absolute and the relative bone growth in length. In addition, an adjusted R2 was used to assess the model fitting. The results indicated that the absolute bone growth in length linearly increased with age. The adjusted R2 values for the linear model were 0.973, 0.937, 0.950, and 0.974 for the lengths of the backbones, third toe, shank bone, and keel bone, respectively. However, the relative bone growth in length logarithmically decreased with age. The adjusted R2 values of the logarithmic model were 0.971, 0.952, 0.957, and 0.905 for the relative length of the backbones, third toe, shank bone, and keel bone, respectively. The present investigation suggests that a linear model is a suitable model for estimating the absolute bone growth in length, but a logarithmic model is a proper model for estimating the relative bone growth in length of commercial broiler chickens.

Key words: Age, Bone growth, Broiler chickens, Mathematical model, Regression
Uses of Single Dose Dependent and Relative Potency Assays for Evaluation of Inactivated Fowl Cholera Vaccine.

Salama SS, Gadallah FM, Gamal Abo-Elkhir FE-Z, Khedr AA and Ali MA.

ABSTRACT:

Fowl cholera is a septicemic respiratory complex caused by Pasteurella multocida, widely distributed in poultry and other avian species and of major economic importance. A total of 37 different inactivated
Pasteurella multocida
evaccines from different sources either locally prepared or imported from different sources were
comparatively tested for relative potency following both single dose and booster dose
vaccination assays. The study objective was to minimize the time factor exhausted in the
evaluation processes of the inactivated fowl cholera vaccines. So it is planned to compare
between single and booster dose vaccinations and their related potency. Correlation between
protection associated with the single dose and booster dose vaccination were evaluated and
average requirement for protection was 43.7% in single dose vaccination assay compared to
76.2% associated with booster dose vaccination assay. In the same concern, the correlation
between both assays for the seroconversion was estimated using ELISA and the minimum
requirement was 1.8× cut off value in the single dose vaccination assay compared to 2.25× cut
off value in the booster dose vaccination assay. In conclusion, single dose vaccination assay
could be valuable in the evaluation of inactivated fowl cholera vaccines through determination of
protection indices and/or estimation of humoral immune response if the above mentioned data
is considered.
Key words: Challenge and chicken, ELISA, Inactivated vaccine, Pasteurella multocida, Single
dose

[Full text- PDF] [XML]