Research Paper

Advancement in Vaccination of Broiler Chickens with Genotype-Matched Vaccines to Currently Epidemic Newcastle Disease Virus Genotype VII in Egypt.
ABSTRACT:

Newcastle disease virus (NDV) outbreaks still occur frequently in Egypt in spite of the heavy implementation of classic NDV vaccines for a long time ago, where NDV genotype VII has become the dominant genotype in Egypt from 2012 until now. Many previous studies have recommended using genotype-matched NDV vaccines against the epidemic virus for providing better protection and minimizing virus shedding. Therefore, the present study evaluated the efficacy of two available live NDV vaccines in Cobb 500 broilers. The group A and B (20 birds each) were vaccinated with live attenuated NDV vaccines genotype VII and II, respectively with double doses at 5 and 19 days of age. Also, group C consisting of 20 unvaccinated birds was studied as a control group. The efficacy of live vaccines was determined using virus challenge test. Hence, all groups were challenged with velogenic NDV genotype VIIId at a dose equivalent to \(10^{6.0}\) 50 percent Embryo Infective Dose (EID\(_{50}\)) via the intramuscular route at 28 days-old. Serum antibodies level was assessed by hemagglutination inhibition test. Moreover, virus shedding was measured by EID\(_{50}\). The obtained results indicated that vaccinated birds had similar haemagglutination titers with no significant difference prior challenge. Meanwhile, group A showed significant protection against mortality, as well as a significant reduction in virus shedding 7 days post-challenge compared to Group B. We concluded that live recombinant-genotype VII vaccine homologous to challenge virus could improve the protective efficiency in chicken against NDV compared to live classic genotype II vaccine. It is suggested that the implementation of genotype-matched NDV vaccines confer better protection in commercial broilers vaccination programs.

Keywords: Broilers, Genotype-matched vaccine, Genotype VII, Newcastle disease virus
ABSTRACT:

Longitudinal bone growth is essential to support rapid body growth in commercial broiler chickens. The present study aimed to determine which simple mathematic model is best
suitable for explaining the absolute and the relative bone growth in length (expressed as a ratio of bone length to body weight) as a function of age in male and female commercial broiler chickens over the first 35 days of age. A total of 1,800 broiler chickens (900 males and 900 females) of Cobb 500, Ross 308, and Arbor Acres raised in standard commercial broiler houses were randomly selected for this study. Body weight and the lengths of backbones, third toe, shank bone, and keel bone were individually measured in all chickens at 1, 7, 14, 21, 28, and 35 days of age. Regression analysis (with 4 simple mathematical models including linear, logarithmic, inverse, and exponential) was used to find a suitable model for estimating the absolute and the relative bone growth in length. In addition, an adjusted R² was used to assess the model fitting. The results indicated that the absolute bone growth in length linearly increased with age. The adjusted R² values for the linear model were 0.973, 0.937, 0.950, and 0.974 for the lengths of the backbones, third toe, shank bone, and keel bone, respectively. However, the relative bone growth in length logarithmically decreased with age. The adjusted R² values of the logarithmic model were 0.971, 0.952, 0.957, and 0.905 for the relative length of the backbones, third toe, shank bone, and keel bone, respectively. The present investigation suggests that a linear model is a suitable model for estimating the absolute bone growth in length, but a logarithmic model is a proper model for estimating the relative bone growth in length of commercial broiler chickens.

Keywords: Age, Bone growth, Broiler chickens, Mathematical model, Regression
Uses of Single Dose Dependent and Relative Potency Assays for Evaluation of Inactivated Fowl Cholera Vaccine.

Salama SS, Gadallah FM, Gamal Abo-Elkhir FE-Z, Khedr AA and Ali MA.

DOI: https://dx.doi.org/10.36380/jwpr.2019.16

ABSTRACT:

Fowl cholera is a septicemic respiratory complex caused by _Pasteurella multocida_, widely distributed in poultry and other avian species and of major economic importance. A total of 37 different inactivated _Pasteurella multocida_ vaccines from different sources either locally prepared or imported from different sources were comparatively tested for relative potency following both single dose and booster dose vaccination assays. The study objective was to minimize the time factor exhausted in the evaluation processes of the inactivated fowl cholera vaccines. So it is planned to compare between single and booster dose vaccinations and their related potency. Correlation between protection associated with the single dose and booster dose vaccination were evaluated and average requirement for protection was 43.7% in single dose vaccination assay compared to 76.2% associated with booster dose vaccination assay. In the same concern, the correlation between both assays for the seroconversion was estimated using ELISA and the minimum requirement was 1.8× cut off value in the single dose vaccination assay compared to 2.25× cut off value in the booster dose vaccination assay. In conclusion, single dose vaccination assay could be valuable in the evaluation of inactivated fowl cholera vaccines through determination of protection indices and/or estimation of humoral immune response if the above mentioned data is considered.

Keywords: Challenge and chicken, ELISA, Inactivated vaccine, _Pasteurella multocida_, Single dose
Research Paper

Optimization of Nutrient Medium for *Pediococcus acidilactici* DS15 to Produce GABA.

Anggraini L, Marlida Y, Wizna W, Jamsari J and Mirzah M.

J. World Poult. Res. 9(3): 139-146, 2019; pii: S2322455X1900018-9

DOI: https://dx.doi.org/10.36380/jwpr.2019.17

ABSTRACT:

Optimization of Nutrient Medium for *Pediococcus acidilactici* DS15 to produce GABA. Glutamate dose: 30, 40, 50, 60, 70 mM. Nitrogen sources: KNO3, NH4NO3, Urea, Pepton, Yeast ekstrak, Whey tofu, susu kedelai. Whey tofu dose: 10, 20, 30, 40, 50, 60, 70, 80, 90, dan 100%. Carbon sources: Glucose, Lactose, Maltose, Sucrose, Palm sugar, Cane sugar. Palm sugar dose: 1, 3, 5, 7, 9, 11, 13, 15%.
Nutrition is an essential factor for microorganisms to grow and survive. Carbon and nitrogen sources are used in producing primary and secondary metabolites. Gamma-Aminobutyric acid (GABA), a non-coded amino acid, is a secondary metabolite which acts as an inhibitory neurotransmitter of the central nervous system. *Pediococcus acidilactici* DS15 is a bacterium belonging to the order of Lactic Acid Bacteria. This study aimed to determine the effects of nutrients including glutamate, nitrogen and carbon sources on GABA production by *Pediococcus acidilactici* DS15. The tests were carried out using a range of 30 mM, 40 mM, 50 mM, 60 mM, and 70 mM glutamate as inducer and carbon sources in the form of peptone, yeast extract, skim milk, NH4NO3, KNO3, whey tofu and soy milk as nitrogen sources, and then glucose, lactose, maltosa, sucrose, palm, and cane sugar as carbon sources. The best sources of both will be tested with levels 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100% for nitrogen and 1, 3, 5, 7, 9, 11, 13 and 15% for carbon. The results of this investigation revealed that the addition of 60 mM glutamate caused the higher amount of GABA production and the best source of nitrogen and carbon for *Pediococcus acidilactici* DS15 were 100% whey tofu and 15% palm sugar, respectively. Production rate of GABA by *Pediococcus acidilactici* DS15 could reach up to 311,485 mg / L.

Keywords: Carbon, GABA, Glutamate, Nitrogen, *Pediococcus acidilactici* DS15

[Full text- PDF] [XML] [Crossref Metadata]
Fermentation of Sargassum binderi Seaweed for Lowering Alginate Content of Feed in Laying Hens.

Dewi YL, Yuniza A, Sayuti K, Nuraini and Mahata ME.

ABSTRACT:

The object of this study was to reduce the alginate content of *Sargassum binderi* by fermentation of *Bacillus megaterium* S245 in feed of laying hens. The experiment was arranged in a factorial with completely randomized design. The first factor was different inoculum dosage (1, 3, 5, 7, and 9%), while the second factor was different fermentation period (1, 3, 5, 7 and 9 days), and each treatment was replicated for five times. The measurements were total dry matter, organic matter, ash, alginate, and crude protein. The results showed there were no significant effect of inoculum dosage, and interaction between inoculum dosage and fermentation period on alginate, total dry matter, organic matter, ash and crude protein content of *Sargassum binderi* while fermentation period reduced the alginate and total dry matter content. Fermentation period also increased the crude protein content significantly. Besides that, fermentation period didn't effect on organic matter and ash content significantly. The fermentation of *Sargassum binderi* with *Bacillus megaterium* S245 at inoculum dosage of 1% and fermentation period of nine days was the best combination for lowering alginate content in *Sargassum binderi* and this treatment had positive effect on nutrient content of *Sargassum binderi*.

Keywords: Alginate, *Bacillus megaterium* S245, Fermentation, Laying hens, *Sargassum binderi*

Effect of Glutamate Supplementation as a Feed Additive on Performance of Broiler Chickens.

Maslami V, Mirnawati, Jamsari, Nur YSh and Marlida Y.

ABSTRACT:

Feed additives are ingredients that are added to the ration as growth promoters and enhancement of the immune system. Glutamate is a feed additive that improves performance by improving the quality of the small intestine and enhancing the immune system. The purpose of this study was to know the effect of including glutamate as a feed additive in improving broiler performance. The material used in this study was broiler strain MB 202 from PT Charoen Phokphand Indonesia as many as 240 birds. The design used was a Completely Randomized Design (CRD) trial design, with six treatments and four replications, so that there were 24 cage plots as experimental units. Each experimental unit consisted of 10 chickens. The Glutamate doses in groups were, A (0.4% commercial glutamate; B (0% glutamate); C (0.2% glutamate); D (0.4% glutamate); E (0.6% glutamate); F (0.8% glutamate). The results indicated that glutamate up to 0.8% had significant effects on feed intake body weight gain and feed conversion ratio (1.70%), but it did not affect the percentage of carcass. It is concluded that including the 0.8% glutamate in broiler disets can improve broiler performance with 35 days of maintenance.

Keywords: Feed additive, Glutamate, Growth promoters, Immune system, Performance