Review

Abd El-Ghany WA.

DOI: https://dx.doi.org/10.36380/jwpr.2019.20
ABSTRACT: The poultry industry is considered an important sector that meets the great demand for protein sources all over the world. Now, quails are recognized as promising and important alternative species with many advantages over other poultry species. In many countries around the world, quail meat has achieved great popularity as a good source of protein and other important nutrients. However, there are some limitations and challenges to quails production. One of them is the susceptibility to some viral, bacterial, mycotic and parasitic diseases that can adversely affect quails. Many of the diseases that affect quails cause severe economic losses in quail industry due to a decrease in growth performance, poor feed conversion, reduction in hatchability, increased mortality and treatment costs. There are limited research and literature dealing with different disease and conditions affecting quails. Therefore, the aim of this work was to present a comprehensive review of the most important emerging diseases affecting quails worldwide.

Keywords: Bacteria, Virus, Mycosis, Mycotoxicosis, Parasites, Quail
ABSTRACT: Favorable conditions for development, reproduction, and accumulation of large amounts of zoophilous flies in commercial poultry farms are caused by incomplete compliance with veterinary and sanitary rules for growing in cage facilities. The purpose of the study was to test a systematic insecticidal program for destroying flies’ populations using adulticide and larvicide drugs in poultry farms under battery cage management. The number of imago flies in hen houses was dynamically evaluated using flypapers, six flypapers in each hen house, situated in different levels above the floor. Flypapers were removed and the number of stuck insects was counted. The number of larvae was evaluated in dynamics by specimen testing from the floor area 10x10 cm, with weight of 3-5 g. The Quick Bayt WG 10% was applied to destroy the imago of flies. Baycidal® WP 25% was used against larvae of flies. Complex insecticide program Quick Bayt WG 10% + Baycidal® WP 25% provided the opportunity to destroy flies, with a significant difference in intensefficacy, (98.3 % for adult flies and 99.8 % for larvae). Furthermore, this program had a positive impact on economic indicators of meat production of broilers. The present study demonstrated high preventive efficacy and economical efficacy of complex program against flies under battery cage broiler management.

Keywords: Adulticide, Economical Efficacy, Fly Larvae, Intensefficacy, Larvicide, Zoophilous Flies
Aspergillus fumigatus infections, leading to considerable economic losses in the poultry industry.

This study aimed to investigate the incidence of Aspergillus fumigatus infections, leading to considerable economic losses in the poultry industry.

Aspergillus fumigatus infections, leading to considerable economic losses in the poultry industry.

The antibody immune response against NDV significantly reduced in birds infected with Aspergillus fumigatus.

The antibody immune response against NDV significantly reduced in birds infected with Aspergillus fumigatus.
ABSTRACT:
The emergence of antibiotic-resistant bacteria, other alternatives are being sought. Supplementation provides an excellent source of protein production worldwide. The poultry gastrointestinal microbiota includes commensal, mutualistic and pathogenic microbes. The relationship between host and gut microbiota can affect the balance of mutualism and pathogenicity. The imbalanced microbiota affects the survival and productivity of chicken. Probiotics as feed additives are considered to enhance chicken productivity and to protect the gut from pathogen colonization and help to tolerate environmental stress. The goal of the present article was to review the poultry gastrointestinal microflora and probiotics role in the maintenance of the gut microbial composition is possible through the regulation of the microbiota by suppressing the growth of pathogens. For many years, antibiotic growth promoters have been used to manage these problems. Nowadays, because of the present study, it was conducted on the effect of Bacillus subtilis inoculum doses and fermentation time to increase the enzyme activity of FPKC by using CRD with 3 × 3 factorial and 3 replications. Factor A was 3 doses of inoculum of 3%, 5%, and 7%. Factor B was fermentation times which contained: (1) 2 days, (2) 4 days, and (3) 6 days. Parameters used were enzyme activity of mannanase, protease, and cellulase in FPKC. Significant interaction was seen between inoculum doses of Bacillus subtilis and fermentation time. There was also a significant interaction on each of the inoculums dose of Bacillus subtilis and fermentation time on all of the enzyme activity. This study concluded FPKC with 7% inoculums doses and 6 days fermentation time indicate the best result as seen from 24.27 U/ml of mannanase activity, 10.27 U/ml of protease activity, and 17.13 U/ml of cellulose activity. In order to increase PKC utilization in poultry ration, fermentation process was done to remodeled β-mannan in PKC. In order to increase PKC utilization in poultry ration, fermentation of the β-mannan in PKC. For many years, antibiotic growth promoters have been used to manage these problems. Nowadays, because of the present study, it was conducted on the effect of Bacillus subtilis inoculum doses and fermentation time to increase the enzyme activity of FPKC by using CRD with 3 × 3 factorial and 3 replications. Factor A was 3 doses of inoculum of 3%, 5%, and 7%. Factor B was fermentation times which contained: (1) 2 days, (2) 4 days, and (3) 6 days. Parameters used were enzyme activity of mannanase, protease, and cellulase in FPKC. Significant interaction was seen between inoculum doses of Bacillus subtilis and fermentation time. There was also a significant interaction on each of the inoculums dose of Bacillus subtilis and fermentation time on all of the enzyme activity. This study concluded FPKC with 7% inoculums doses and 6 days fermentation time indicate the best result as seen from 24.27 U/ml of mannanase activity, 10.27 U/ml of protease activity, and 17.13 U/ml of cellulose activity. In order to increase PKC utilization in poultry ration, fermentation process was done to remodeled β-mannan in PKC. In order to increase PKC utilization in poultry ration, fermentation process was done to remodeled β-mannan in PKC. In order to increase PKC utilization in poultry ration, fermentation process was done to remodeled β-mannan in PKC. In order to increase PKC utilization in poultry ration, fermentation process was done to remodeled β-mannan in PKC.
History and Current Situation of Commercial Ostrich Farming in Mexico

Experimental study of feeding laying hens with the feed, containing the Mospilan and Actara insecticides

Neonicotinoids
Mospilan (Acetamiprid)
32.5-45 mg/kg of body weight
Actara (Thiamethoxam)
180-360 mg/kg of body weight

Chronic poisoning
78 - 99%

Reduced egg productivity

Change the biochemical processes in meat and increase its toxicity
30 days
Low toxic

Keywords:
Emerging sectors, Exotic poultry, Niche market, Specialty livestock, Organization, Demand response.

DOI:

The effects of Mospilan and Actara insecticides on egg production performance and meat quality of laying hens. The experiments were performed on five groups each consisting of seven chickens. The age of chickens at the beginning of the experiment was 150 days. The birds were fed the experimental groups was low toxic. Extracts from chicken meat of the experimental groups caused pathological changes, inhibition of movements and death of 13-16% of Tetrahymena pyriformis infusoria. This study demonstrated that the presence of Mospilan and Actara in feed reduced the egg production rate, caused chronic poisoning, changed biochemical processes in meat and increased its toxicity.

Toxicology of the National University of Life and Environmental Sciences of Ukraine in 2015.

ABSTRACT:
The Effects of Mospilan and Actara Insecticides in the Feed on Egg Production and Meat Quality of Laying Hens.

Keywords:

Experimental research was conducted in the laboratory of the Department of Pharmacology and Toxicology of the National University of Life and Environmental Sciences of Ukraine in 2015.

Toxicology of the National University of Life and Environmental Sciences of Ukraine in 2015.

doi:10.36380/jwpr.2019.29

Chicken meat quality, Egg productivity, Insecticides Mospilan and Actara, Laying hens, Neonicotinoids.

ABSTRACT:
The Effects of Mospilan and Actara Insecticides in the Feed on Egg Production and Meat Quality of Laying Hens.

Keywords:
Chicken meat quality, Egg productivity, Insecticides Mospilan and Actara, Laying hens, Neonicotinoids.

Experimental research was conducted in the laboratory of the Department of Pharmacology and Toxicology of the National University of Life and Environmental Sciences of Ukraine in 2015.

ABSTRACT:
The Effects of Mospilan and Actara Insecticides in the Feed on Egg Production and Meat Quality of Laying Hens.

Keywords:
Chicken meat quality, Egg productivity, Insecticides Mospilan and Actara, Laying hens, Neonicotinoids.