Review

Abd El-Ghany WA.

DOI: https://dx.doi.org/10.36380/jwpr.2019.20
ABSTRACT: The poultry industry is considered an important sector that meets the great demand for protein sources all over the world. Now, quails are recognized as promising and important alternative species with many advantages over other poultry species. In many countries around the world, quail meat has achieved great popularity as a good source of protein and other important nutrients. However, there are some limitations and challenges to quails production. One of them is the susceptibility to some viral, bacterial, mycotic and parasitic diseases that can adversely affect quails. Many of the diseases that affect quails cause severe economic losses in quail industry due to a decrease in growth performance, poor feed conversion, reduction in hatchability, increased mortality and treatment costs. There are limited research and literature dealing with different disease and conditions affecting quails. Therefore, the aim of this work was to present a comprehensive review of the most important emerging diseases affecting quails worldwide.

Keywords: Bacteria, Virus, Mycosis, Myctoxicosis, Parasites, Quail
Safiullin RT, Safiullin RR and Kachanova EO.

DOI: https://dx.doi.org/10.36380/jwpr.2019.21

ABSTRACT: Favorable conditions for development, reproduction, and accumulation of large amounts of zoophilous flies in commercial poultry farms are caused by incomplete compliance with veterinary and sanitary rules for growing in cage facilities. The purpose of the study was to test a systematic insecticidal program for destroying flies’ populations using adulticide and larvicide drugs in poultry farms under battery cage management. The number of imago flies in hen houses was dynamically evaluated using flypapers, six flypapers in each hen house, situated in different levels above the floor. Flypapers were removed and the number of stuck insects was counted. The number of larvae was evaluated in dynamics by specimen testing from the floor area 10x10 cm, with weight of 3-5 g. The Quick Bayt WG 10% was applied to destroy the imago of flies. Baycidal® WP 25% was used against larvae of flies. Complex insecticide program Quick Bayt WG 10% + Baycidal® WP 25% provided the opportunity to destroy flies, with a significant difference in intensefficacy, (98.3 % for adult flies and 99.8 % for larvae). Furthermore, this program had a positive impact on economic indicators of meat production of broilers. The present study demonstrated high preventive efficacy and economical efficacy of complex program against flies under battery cage broiler management. **Keywords:** Adulticide, Economical Efficacy, Fly Larvae, Intensefficacy, Larvicide, Zoophilous Flies
Aspergillus fumigatus was isolated from feedstuff and broilers in farms with respiratory manifestation. Twenty vaccinated broilers but not fed the contaminated diet were used as the control group.

ABSTRACT:

Infections with other pathogens such as Newcastle Disease Virus (NDV). This study aimed to investigate the incidence of immunosuppressive effect of aspergillosis on NDV vaccinated birds. NDV-vaccinated broiler chickens of 10 days old were experimentally infected by feeding on contaminated with Newcastle Disease Virus in Broiler Chickens.

Al-Azawy AKh and Al-Ajeeli KS.

Clinical signs, histopathological changes, NDV antibody levels in infected birds compared with that of non-infected broilers. It is concluded, that infection suppresses the immune responses and predisposes the broilers to other microbial infections with other pathogens such as Newcastle Disease Virus (NDV).

Keywords:

Aspergillus fumigatus, Clinical signs, Histopathological changes, NDV, antibody levels, Immunosuppressive effect.

The use of antibiotics as growth promoters in food animals has been banned due to a range of negative impacts. Antibiotics used for this reason led to a rise in antibiotic resistance, which has implications for human health. This study aims to evaluate the effects of dietary additives on broiler chickens.

Table 1: Effects of Dietary Additives on Hematological and Serum Biochemical Parameters of Broiler Chickens

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Hematological Parameters</th>
<th>Serum Biochemical Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table above shows the effects of different dietary additives on the hematological and serum biochemical parameters of broiler chickens. The control group did not receive any additives, while the other treatments involved different combinations of natural ingredients. The data indicate significant changes in various parameters, suggesting the potential benefits of these additives in poultry nutrition.

References:

Abbreviations:

- MOLM: Moringa oleifera leaf meal
- GKSM: Garcinia kola seed meal
- CF: Crude fiber
- NDV: Newcastle Disease Virus
- Grits: Crushed corn seed meal
- Lycopene: A carotenoid found in tomatoes
- Nitrogen retention: The amount of nitrogen absorbed by the body

Conclusion:

The use of dietary additives in broiler chicken feed can improve hematological and serum biochemical parameters, supporting the health and growth of broiler chickens. Further research is needed to fully understand the long-term effects and optimal concentrations of these additives.
Tsega KT, Maina JK and Tesema NB.

ABSTRACT:
Gastrointestinal microbiota by suppressing the growth of pathogens. For many years, antibiotic practices, and environmental stress affects the survival and productivity of chicken. Review health and growth of poultry. In addition, this article focused on probiotic microorganisms and microbiota includes commensal, mutualistic and pathogenic microbes. The relationship between growth promoters have been used to manage these problems. Nowadays, because of the emergence of antibiotic-resistant bacteria, other alternatives are being sought. Supplementation of probiotics as feed additives is considered to enhance chicken productivitity and to protect the host and gut microbiota can affect the balance of mutualism and pathogenicity. The imbalanced maintenance of the gut microbial composition is possible through the regulation of the gut from pathogen colonization and help to tolerate environmental stress. The goal of the present article was to review the poultry gastrointestinal microflora and probiotics role in the gut microflora caused by the incidence of disease, hygiene conditions, diet, management and ventilation rates located in El-Sharkia Governorate, Egypt, during June and July 2018. In this study, it was found that productivity increased by increasing the ventilation rate, where productivity reached 2.3 kg when using a solar heating system with a ventilation rate every two minutes. In addition, solar energy provided good levels of productivity reached 2.3 kg when using a solar heating system with a ventilation rate every two minutes. Productivity decreased in poultry houses with a conventional heating system and was 2 kg in ventilation rate every 2 minutes, and 1.8 kg in the ventilation rate every four minutes. DOI: [Full text]

The Effect of Bacillus subtilis Inoculum Doses and Fermentation Time on Enzyme Activity of Fermented Palm Kernel Cake (FPKC)

Gad S, El-Shazly MA, Wasfy KA and Awny A.

ABSTRACT:
The main purpose of the present study was to find an alternative source for traditional energy to provide the energy requirements in the poultry industry. The present study was conducted in four poultry houses with different heating systems (solar and conventional) at the ventilation rate every four minutes. In addition, solar energy provided good levels of productivity reached 2.3 kg when using a solar heating system with a ventilation rate every two minutes. Levels of ammonia were also reduced with the ventilation rate every two minutes. DOI: [Full text]

Concentrations of ammonia ranged from 22 ppm at ventilation rate every two minutes to 28 ppm minutes. Productivity decreased in poultry houses with a conventional heating system and was 2 kg in ventilation rate every 2 minutes, and 1.8 kg in the ventilation rate every four minutes. DOI: [Full text]

Review Paper

Energy balance, Poultry production, Solar heating system, Ventilation

Poultry production is presently the most effective animal production industry and Palm kernel cake (PKC) was by-product of palm oil industry and it had potential to be one of the poultry ration ingredient However, its utilization for poultry was still limited because of the process was done to remodeled β mannan by using Bacillus subtilis. This research conducted a study on the effect of Bacillus subtilis inoculum doses and fermentation times on enzyme activity of fermented PKC. In order to increase PKC utilization in poultry ration, fermentation of the β-mannan in PKC. Parameters used were enzyme activity of mannanase, protease, and cellulase in pork liver by Bacillus subtilis. The activity of fermented PKC with Bacillus subtilis of 7% inoculum doses and 6 day fermentation time indicate the best result as seen box 0.27 Unit of mannanase activity, 15.11 Unit of cellulase activity, 10.27 Unit of protease activity. DOI: [Full text]

Key words: Gastrointestinal microbiota, Poultry, Probiotics

The Effect of Bacillus subtilis Inoculum Doses and Fermentation Time on Enzyme Activity of Fermented Palm Kernel Cake (FPKC)

Key words: Bacillus subtilis, Enzyme activity, Fermentation time, Inoculum doses, Palm Kernel Cake.
ABSTRACT: The Effects of Mospilan and Actara Insecticides in the Feed on Egg Production and Meat Quality of Laying Hens.

Keywords: Neonicotinoids, Neonicotinoid insecticides, Actara insecticides, laying hens, egg production, meat quality.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

References:

http://dx.doi.org/10.36380/jwpr.2019.29

http://dx.doi.org/10.36380/jwpr.2019.28