
Abd El-Ghany WA.

DOI: https://dx.doi.org/10.36380/jwpr.2019.20
ABSTRACT: The poultry industry is considered an important sector that meets the great demand for protein sources all over the world. Now, quails are recognized as promising and important alternative species with many advantages over other poultry species. In many countries around the world, quail meat has achieved great popularity as a good source of protein and other important nutrients. However, there are some limitations and challenges to quails production. One of them is the susceptibility to some viral, bacterial, mycotic and parasitic diseases that can adversely affect quails. Many of the diseases that affect quails cause severe economic losses in quail industry due to a decrease in growth performance, poor feed conversion, reduction in hatchability, increased mortality and treatment costs. There are limited research and literature dealing with different disease and conditions affecting quails. Therefore, the aim of this work was to present a comprehensive review of the most important emerging diseases affecting quails worldwide.

Keywords: Bacteria, Virus, Mycosis, Myctoxicosis, Parasites, Quail
ABSTRACT: Favorable conditions for development, reproduction, and accumulation of large amounts of zoophilous flies in commercial poultry farms are caused by incomplete compliance with veterinary and sanitary rules for growing in cage facilities. The purpose of the study was to test a systematic insecticidal program for destroying flies’ populations using adulticide and larvicide drugs in poultry farms under battery cage management. The number of imago flies in hen houses was dynamically evaluated using flypapers, six flypapers in each hen house, situated in different levels above the floor. Flypapers were removed and the number of stuck insects was counted. The number of larvae was evaluated in dynamics by specimen testing from the floor area 10x10 cm, with weight of 3-5 g. The Quick Bayt WG 10% was applied to destroy the imago of flies. Baycidal® WP 25% was used against larvae of flies. Complex insecticide program Quick Bayt WG 10% + Baycidal® WP 25% provided the opportunity to destroy flies, with a significant difference in intensefficacy, (98.3 % for adult flies and 99.8 % for larvae). Furthermore, this program had a positive impact on economic indicators of meat production of broilers. The present study demonstrated high preventive efficacy and economical efficacy of complex program against flies under battery cage broiler management.

Keywords: Adulticide, Economical Efficacy, Fly Larvae, Intensefficacy, Larvicide, Zoophilous Flies
Aspergillus fumigatus infection suppresses the immune responses and predisposes the broilers to other microbial infections, leading to considerable economic losses in the poultry industry.

ABSTRACT:
Twenty vaccinated broilers but not fed the contaminated diet were used as the control group. NDV-vaccinated broiler chickens of 10 days old were experimentally infected by feeding on feedstuff contaminated with Aspergillus fumigatus. Clinical signs, histopathological changes, NDV antibody levels in infected birds were recorded. Watery diarrhea, anorexia, lethargy, and unilateral drooping of wing were observed as disseminated granulomatous foci in the affected lungs, with caseous necrosis investigated the incidence of Aspergillus fumigatus infections, leading to considerable economic losses in the poultry industry.

DOI:
https://dx.doi.org/10.36380/jwpr.2019.24

Keywords:
Feed additive, Aspergillus fumigatus

The antibody immune response against NDV significantly reduced in birds infected with Aspergillus fumigatus. Apoptosis and autophagy suppress immune responses that may facilitate the infection of broilers with other microbial infections, leading to considerable economic losses in the poultry industry.

ABSTRACT:
The use of antibiotics as growth promoters in food animals has been banned due to the emergence of multidrug-resistant bacteria. The use of herbal feed additives and phytogenic feed additives is a suitable alternative to antibiotics. Garcinia Kola is a tropical plant native to Africa and has been used in traditional medicine for the treatment of various diseases. Azadirachta indica is a plant widely grown in India and is known for its medicinal properties. The aim of the present study was to investigate the effects of two herbal feed additives with or without grits on hematological and serum biochemical parameters of broiler chickens. One hundred and forty-four, one-day-old, Cobb 500 broiler chicks were randomly assigned into six treatments (24 birds per treatment) with three replicates (eight bird per replicate). Six dietary treatments were formulated with the inclusion of Garcinia kola (GKSM) and Moringa oleifera (MOLM) leaves at 1000 ppm, supplemented with GKSM at 1000 ppm, increased high-density lipoprotein, and reduced triglyceride and low-density lipoprotein levels in serum of broiler chickens. At the finisher phase, the birds of the first treatment had the highest glucose level (131.50 g/dl) and high-density lipoprotein level (58.50 mg/dl). At the finisher phase, the lowest white blood cell count (10.95 ×10^10/L) and lymphocytes (60%) were recorded in treatment 6. Birds in treatment 3 indicated the lowest urea (2.05 mg/dl) and triglyceride (94.50 mg/dl). It can be concluded that diet formulated with the inclusion of Garcinia kola at 1000 ppm + grits at 1000ppm (treatment 5) and diet with GKSM at 1000ppm + grits at 1000ppm (treatment 1) were more suitable for producing broiler chickens with lower levels of blood urea and triglycerides. The birds that received treatment 5, had the lowest glucose (105.50 g/dl) and high-density lipoprotein level (43.50 mg/dl) and treatment 1, had the lowest triglyceride (75.00 mg/dl) and low-density lipoprotein level (15.00 mg/dl) at the finisher phase. It is therefore recommended that these diets can be used for producing broiler chickens with lower blood glucose and triglycerides levels.
ABSTRACT:

The use of probiotics as feed additives is considered to enhance chicken productivity and protect against the emergence of antibiotic-resistant bacteria, with other alternatives being sought. Supplementation of the gut from pathogen colonization and help to tolerate environmental stress. The goal of the gut microflora caused by the incidence of disease, hygiene conditions, diet, management practices, and environmental stress affects the survival and productivity of chicken.

Key words: Probiotics and Poultry Gut Microflora.

Review

Inoculum doses and fermentation time to increase the enzyme activity of FPKC by using CRD. Bacillus subtilis was one of the poultry ration ingredient however its utilization was still limited because of the potential characteristics. The main purpose of the present study was to find an alternative source for traditional energy to provide the energy requirements in the poultry industry. The present study was conducted in four poultry houses with different heating systems (solar and conventional) and ventilation rates located in El-Sharkia Governorate, Egypt, during June and July 2018. In addition, solar energy provided good levels of thermal requirements. It was demonstrated that solar energy as an alternative source to the conventional electricity as a light source and within specified limits.

Productivity increased by increasing the ventilation rate, where productivity reached 2.3 kg when using a solar heating system with a ventilation rate every two minutes. In addition, solar energy provided good levels of productivity when using a solar heating system with a ventilation rate every two minutes. Productivity decreased in poultry houses with a conventional heating system and was 2 kg in ventilation rate every 2 minutes, and 1.8 kg in the ventilation rate every four minutes. The level of ammonia was also reduced with the ventilation rate every two minutes. It was demonstrated that solar energy as an alternative source to the conventional energy, is very efficient and can be applied on a large scale when combined with other energy systems.
Experimental study of feeding laying hens with the feed, containing the Mospilan and Actara insecticides

Neonicotinoids
Mospilan (Acetamiprid) 32.5-45 mg/kg of body weight
Actara (Thiamethoxam) 180-360 mg/kg of body weight

Chronic poisoning

- 78 - 99%
- Reduced egg productivity
- Change the biochemical processes in meat and increase its toxicity

30 days

Low toxic

Keywords: Chicken meat quality, Egg productivity, Insecticides Mospilan and Actara, Laying hens, Neonicotinoids.