Review

Abd El-Ghany WA.

DOI: https://dx.doi.org/10.36380/jwpr.2019.20
ABSTRACT: The poultry industry is considered an important sector that meets the great demand for protein sources all over the world. Now, quails are recognized as promising and important alternative species with many advantages over other poultry species. In many countries around the world, quail meat has achieved great popularity as a good source of protein and other important nutrients. However, there are some limitations and challenges to quails production. One of them is the susceptibility to some viral, bacterial, mycotic and parasitic diseases that can adversely affect quails. Many of the diseases that affect quails cause severe economic losses in quail industry due to a decrease in growth performance, poor feed conversion, reduction in hatchability, increased mortality and treatment costs. There are limited research and literature dealing with different disease and conditions affecting quails. Therefore, the aim of this work was to present a comprehensive review of the most important emerging diseases affecting quails worldwide.

Keywords: Bacteria, Virus, Mycosis, Mycotoxicosis, Parasites, Quail
ABSTRACT: Favorable conditions for development, reproduction, and accumulation of large amounts of zoophilous flies in commercial poultry farms are caused by incomplete compliance with veterinary and sanitary rules for growing in cage facilities. The purpose of the study was to test a systematic insecticidal program for destroying flies' populations using adulticide and larvicide drugs in poultry farms under battery cage management. The number of imago flies in hen houses was dynamically evaluated using flypapers, six flypapers in each hen house, situated in different levels above the floor. Flypapers were removed and the number of stuck insects was counted. The number of larvae was evaluated in dynamics by specimen testing from the floor area 10x10 cm, with weight of 3-5 g. The Quick Bayt WG 10% was applied to destroy the imago of flies. Baycidal® WP 25% was used against larvae of flies. Complex insecticide program Quick Bayt WG 10% + Baycidal® WP 25% provided the opportunity to destroy flies, with a significant difference in intensefficacy, (98.3 % for adult flies and 99.8 % for larvae). Furthermore, this program had a positive impact on economic indicators of meat production of broilers. The present study demonstrated high preventive efficacy and economical efficacy of complex program against flies under battery cage broiler management.

Keywords: Adulticide, Economical Efficacy, Fly Larvae, Intensefficacy, Larvicide, Zoophilous Flies
ABSTRACT:

Clinically, infected birds showed respiratory distress, dyspnea, gasping, ruffled feathers, green watery diarrhea, anorexia, lethargy, and unilateral drooping of wing. Histopathological changes in infected birds compared with that of non-infected broilers. It is concluded, that immunosuppressive effect of aspergillosis on NDV vaccinated birds. Aspergillus fumigatus contaminated with Aspergillus fumigatus. Twenty vaccinated broilers but not fed the contaminated diet were used as the control group. Infections, leading to considerable economic losses in the poultry industry.

Keywords:

Aspergillus fumigatus, Clinically, Histopathological, NDV, Immunobiochemical, Aspergillosis

DOI:

https://dx.doi.org/10.36380/jwpr.2019.23

Reference:

Image Description:

- **BROILER:** Image of a broiler chicken.
- **GRITS:** Image of grits.
- **GARCINA:** Image of Garcinia fruits.

Figure:

A flowchart showing the process of tomato powder production from fresh tomatoes to processed powder, highlighting the stages of drying and packaging.

Table:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Lycopene Retention (%)</th>
<th>CF Digestibility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>12.3</td>
<td>45.2</td>
</tr>
<tr>
<td>0.25% Palm Oil</td>
<td>11.5</td>
<td>47.8</td>
</tr>
<tr>
<td>0.5% Palm Oil</td>
<td>11.0</td>
<td>48.5</td>
</tr>
<tr>
<td>0.75% Palm Oil</td>
<td>10.7</td>
<td>50.2</td>
</tr>
<tr>
<td>1% Palm Oil</td>
<td>10.3</td>
<td>51.1</td>
</tr>
<tr>
<td>1.25% Palm Oil</td>
<td>9.9</td>
<td>52.0</td>
</tr>
<tr>
<td>0.25% Coconut Oil</td>
<td>12.0</td>
<td>44.8</td>
</tr>
<tr>
<td>0.5% Coconut Oil</td>
<td>11.5</td>
<td>46.7</td>
</tr>
<tr>
<td>0.75% Coconut Oil</td>
<td>11.0</td>
<td>48.4</td>
</tr>
<tr>
<td>1% Coconut Oil</td>
<td>10.7</td>
<td>49.9</td>
</tr>
<tr>
<td>1.25% Coconut Oil</td>
<td>10.3</td>
<td>51.7</td>
</tr>
</tbody>
</table>

Reference:

Adejola YA, Sobayo RA, Muhammad SB, Ayoola AA and Jinadu KB. (2019). Effects of Moringa oleifera and Garcinia kola (palm and coconut oils) and dosage of oils (0.25, 0.5, 0.75, 1, and 1.25 %), and each treatment was replicated three times. The results indicated there was an interaction between the type of oil, dosage of oil on lycopene retention, and CF digestibility, while the type of oil and dosage of oil affected lycopene retention significantly. The dosage of oil also influenced lycopene retention. The birds that received treatment 6, had the highest glucose (131.50 g/dl) and high-density lipoprotein level (58.50 mg/dl). At the finisher phase, the lowest white blood cell count (10.95 ×10^9/L) and lymphocytes (60%) were recorded in treatment 6. Birds in treatment 3 indicated the lowest red blood cell (4.15 ×10^12/L) and high-density lipoprotein level (30.10 mg/dl). At the finisher phase, the lowest white blood cell count (10.95 ×10^9/L) and lymphocytes (60%) were recorded in treatment 6. Birds in treatment 3 indicated the lowest red blood cell (4.15 ×10^12/L) and high-density lipoprotein level (30.10 mg/dl).
Bacillus subtilis provides an excellent source of protein production worldwide. The poultry gastrointestinal tract microflora caused by the incidence of disease, hygiene conditions, diet, management practices, and environmental stress affects the survival and productivity of chicken. DOI: their potential characteristics.

ABSTRACT: Maintenance of the gut microbial composition is possible through the regulation of the gastrointestinal microbiota by suppressing the growth of pathogens. For many years, antibiotic growth promoters have been used to manage these problems. Nowadays, because of the emergence of antibiotic-resistant bacteria, other alternatives are being sought. Supplementation of probiotics as feed additives is considered to enhance chicken productivitity and to protect the gut from pathogen colonization and help to tolerate environmental stress. The goal of the present article was to review the poultry gastrointestinal microflora and probiotics role in the health and growth of poultry. In addition, this article focused on probiotic microorganisms and their potential characteristics.

Keywords: Probiotics and Poultry Gut Microflora, Bacillus subtilis, Gastrointestinal microbiota, Poultry, Probiotics.
Experimental research was conducted in the laboratory of the Department of Pharmacology and Toxicology of the National University of Life and Environmental Sciences of Ukraine in 2015. The effects of Mospilan and Actara insecticides on egg production performance and meat quality of laying hens.

Keywords: Neonicotinoids, Mospilan, Actara insecticides, laying hens, egg production, meat quality, experimental research.

The experiments were performed on five groups each consisting of seven chickens. The age of chickens at the beginning of the experiment was 150 days. The birds were fed the granulated compound feed. In M1 and M2 groups, Mospilan at doses of 65 mg/kg and 32.5 mg/kg of body weight were added to the feed, respectively. In A1 and A2 groups, Actara at doses of 360 mg/kg and 180 mg/kg of body weight were added to the feed, respectively. Chickens of the control group were fed without the addition of insecticides to the feed. The feeding period lasted 30 days and finally, egg production performance, meat quality, and gross pathological changes were evaluated.

Egg production rate in M1 and M2 groups in comparison to the control group decreased by 78.4 and 29.7%, respectively. Egg production rate in A1 and A2 groups reduced by 89.2% and 48.7% compared to the control group, respectively. Chickens caused pathological changes, inhibition of movements and death of 13-16% of Tetrahymena pyriformis infusoria. This study demonstrated that the presence of Mospilan and Aktara in feed caused pathological changes, chronic poisoning, and death of laying hens. The experiments showed that Mospilan and Actara insecticides in feed decreased the egg production rate, caused chronic poisoning, changed biochemical processes in the chickens, and increased the toxicity of meat. Extracts from chicken meat of the experimental groups were pale and enlarged in color, also showed spot hemorrhages in mucous membranes of the glandular stomach and intestine, color heterogeneity, and volume changes of internal organs. The meat of birds from the experimental groups was slightly cloudy with flakes. The meat of birds from the control group was dark cherry in color with hemorrhage. In addition, the relative weights of internal organs decreased by 23-36% in experimental groups. In the experimental groups, the birds had pale skin and enlarged heart, also showed spot hemorrhages in mucous membranes of the glandular stomach and intestine, color heterogeneity, and volume changes of internal organs. The meat of birds from the control group was dark cherry in color with hemorrhage. In addition, the relative weights of internal organs decreased by 23-36% in experimental groups.