
Abd El-Ghany WA.

DOI: https://dx.doi.org/10.36380/jwpr.2019.20
ABSTRACT: The poultry industry is considered an important sector that meets the great demand for protein sources all over the world. Now, quails are recognized as promising and important alternative species with many advantages over other poultry species. In many countries around the world, quail meat has achieved great popularity as a good source of protein and other important nutrients. However, there are some limitations and challenges to quails production. One of them is the susceptibility to some viral, bacterial, mycotic and parasitic diseases that can adversely affect quails. Many of the diseases that affect quails cause severe economic losses in quail industry due to a decrease in growth performance, poor feed conversion, reduction in hatchability, increased mortality and treatment costs. There are limited research and literature dealing with different disease and conditions affecting quails. Therefore, the aim of this work was to present a comprehensive review of the most important emerging diseases affecting quails worldwide.

Keywords: Bacteria, Virus, Mycosis, Myctoxicosis, Parasites, Quail

Research Paper

Systematic Program for Destroying of Flies’ Population in Poultry Farm under Battery Cage Management in Russia.
ABSTRACT: Favorable conditions for development, reproduction, and accumulation of large amounts of zoophilous flies in commercial poultry farms are caused by incomplete compliance with veterinary and sanitary rules for growing in cage facilities. The purpose of the study was to test a systematic insecticidal program for destroying flies’ populations using adulticide and larvicide drugs in poultry farms under battery cage management. The number of imago flies in hen houses was dynamically evaluated using flypapers, six flypapers in each hen house, situated in different levels above the floor. Flypapers were removed and the number of stuck insects was counted. The number of larvae was evaluated in dynamics by specimen testing from the floor area 10x10 cm, with weight of 3-5 g. The Quick Bayt WG 10% was applied to destroy the imago of flies. Baycidal® WP 25% was used against larvae of flies. Complex insecticide program Quick Bayt WG 10% + Baycidal® WP 25% provided the opportunity to destroy flies, with a significant difference in intensefficacy, (98.3 % for adult flies and 99.8 % for larvae). Furthermore, this program had a positive impact on economic indicators of meat production of broilers. The present study demonstrated high preventive efficacy and economical efficacy of complex program against flies under battery cage broiler management.

Keywords: Adulticide, Economical Efficacy, Fly Larvae, Intensefficacy, Larvicide, Zoophilous Flies

The antibo...

The antibody immune response against NDV significantly reduced in birds infected with Aspergillus fumigatus.

The antibody immune response against NDV significantly reduced in birds infected with Aspergillus fumigatus.

The antibody immune response against NDV significantly reduced in birds infected with Aspergillus fumigatus.

The antibody immune response against NDV significantly reduced in birds infected with Aspergillus fumigatus.

The antibody immune response against NDV significantly reduced in birds infected with Aspergillus fumigatus.

The antibody immune response against NDV significantly reduced in birds infected with Aspergillus fumigatus.

The antibody immune response against NDV significantly reduced in birds infected with Aspergillus fumigatus.

ABSTRACT:

Probiotics and Poultry Gut Microflora.

Key words: Bacillus subtilis, Probiotics, Gastrointestinal microbiota, Poultry, Probiotics

Research Paper

Bacillus subtilis is one of the poultry ration ingredient. However, its utilization for poultry was still limited because of the β-mannan in PKC. In order to increase PKC utilization in poultry ration, fermentation process was done to remodeled β mannan by using Bacillus subtilis and fermentation time. There was also a significant interaction on each of the inoculums dose of 3%, 5%, and 7%. Factor B was fermentation times which contained: (1) 2 days, (2) 4 days, and (3) 6 days. Parameters used were enzyme activity of mannanase, protease, and cellulase in FPKC with Bacillus subtilis inoculum doses and 6 days fermentation time indicate the best result as seen box 23.27 U/ml of mannanase activity, 10.27 U/ml of protease activity, 17.13 U/ml of cellulase activity.

REFERENCES:

DOI:

https://dx.doi.org/10.36380/jwpr.2019.27
https://dx.doi.org/10.36380/jwpr.2019.26
https://dx.doi.org/10.36380/jwpr.2019.25

- 5 / 6
The Effects of Mospilan and Actara Insecticides in the Feed on Egg Production and Meat Quality of Laying Hens

Dukhnytskyi V, Bazaka G, Sokolyuk V, Boiko P and Ligomina I.

ABSTRACT:

Experimental study of feeding laying hens with the feed, containing the Mospilan and Actara insecticides

Chronic poisoning

Neonicotinoids
Mospilan (Acetamiprid)
32.5-65 mg/kg of body weight
Actara (Thiamethoxam)
180-360 mg/kg of body weight

Reduced egg productivity

Change the biochemical processes in meat and increase its toxicity

30 days

78 - 99%

Keywords:
Actara insecticides on egg production performance and meat quality of laying hens.

DOI:

Crossref Metadata

Creative Commons Attribution-NonCommercial 4.0 International License

History and Current Situation of Commercial Ostrich Farming in Mexico

Isla-Moreno A and Rendón-Medel R. [Full text]

Volume 9 : Issue 4, December 2019

http://dx.doi.org/10.36380/jwpr.2019.28

http://dx.doi.org/10.36380/jwpr.2019.28

Keywords:
Ostrich meat

Experimental research was conducted in the laboratory of the Department of Pharmacology and Toxicology of the National University of Life and Environmental Sciences of Ukraine in 2015.

The chickens at the beginning of the experiment was 150 days. The birds were fed the granulated compound feed. In M1 and M2 groups, Mospilan at doses of 65 mg/kg and 32.5 mg/kg of body weight were added to the feed, respectively. In A1 and A2 groups, Actara at doses of 360 mg/kg and 180 mg/kg of body weight were added to the feed, respectively.

In M1 and M2 groups, the pH of meat decreased at day 4 post-slaughter, and the meat broth with the addition of chicken meat and increased its toxicity.

Toxicological studies showed that the presence of Mospilan and Actara in feed caused pathological changes, inhibition of movements and death of 13-16% of Tetrahymena pyriformis infusoria. This study demonstrated that the presence of Mospilan and Actara in feed reduced the egg production rate, caused chronic poisoning, changed biochemical processes in the body, reduced egg productivity, and increased the toxicity of the meat broth.

In the experimental groups, the pH of meat decreased at day 4 post-slaughter, and the meat broth with the addition of chicken meat and increased its toxicity.

The experiments were performed on five groups each consisting of seven chickens. The age of hens, Neonicotinoids.

The average age of the chickens in each group was 150 days.

The birds were fed the following feeds:

- Control group (M1): granulated compound feed
- Mospilan group (M2): granulated compound feed with 65 mg/kg of Mospilan
- Actara group (A1): granulated compound feed with 360 mg/kg of Actara
- Actara group (A2): granulated compound feed with 180 mg/kg of Actara

The blood samples were taken from the hens daily for 30 days post-slaughter and analyzed for pathological changes. Egg production rate was calculated for each group.

Egg production rate in A1 and A2 groups reduced by 89.2% and 48.7% compared to the control group, respectively. Chickens of the A2 group showed hemorrhages in mucous membranes of the glandular stomach and intestine, color heterogeneity of the lungs, and the liver was dark cherry in color with hemorrhage.

The relative weights of internal organs decreased by 23-36% in experimental groups. In the control group, the relative weights of internal organs were equal to 100%.

The results showed that feeding Mospilan and Actara insecticides in the feed at the mentioned doses caused pathological changes in the body, reduced egg production rate, increased the toxicity of the meat broth, and changed biochemical processes.