Review

Abd El-Ghany WA.

DOI: https://dx.doi.org/10.36380/jwpr.2019.20
ABSTRACT: The poultry industry is considered an important sector that meets the great demand for protein sources all over the world. Now, quails are recognized as promising and important alternative species with many advantages over other poultry species. In many countries around the world, quail meat has achieved great popularity as a good source of protein and other important nutrients. However, there are some limitations and challenges to quails production. One of them is the susceptibility to some viral, bacterial, mycotic and parasitic diseases that can adversely affect quails. Many of the diseases that affect quails cause severe economic losses in quail industry due to a decrease in growth performance, poor feed conversion, reduction in hatchability, increased mortality and treatment costs. There are limited research and literature dealing with different disease and conditions affecting quails. Therefore, the aim of this work was to present a comprehensive review of the most important emerging diseases affecting quails worldwide.

Keywords: Bacteria, Virus, Mycosis, Myotoxicosis, Parasites, Quail
ABSTRACT: Favorable conditions for development, reproduction, and accumulation of large amounts of zoophilous flies in commercial poultry farms are caused by incomplete compliance with veterinary and sanitary rules for growing in cage facilities. The purpose of the study was to test a systematic insecticidal program for destroying flies’ populations using adulticide and larvicide drugs in poultry farms under battery cage management. The number of imago flies in hen houses was dynamically evaluated using flypapers, six flypapers in each hen house, situated in different levels above the floor. Flypapers were removed and the number of stuck insects was counted. The number of larvae was evaluated in dynamics by specimen testing from the floor area 10x10 cm, with weight of 3-5 g. The Quick Bayt WG 10% was applied to destroy the imago of flies. Baycidal® WP 25% was used against larvae of flies. Complex insecticide program Quick Bayt WG 10% + Baycidal® WP 25% provided the opportunity to destroy flies, with a significant difference in intensefficacy, (98.3 % for adult flies and 99.8 % for larvae). Furthermore, this program had a positive impact on economic indicators of meat production of broilers. The present study demonstrated high preventive efficacy and economical efficacy of complex program against flies under battery cage broiler management.

Keywords: Adulticide, Economical Efficacy, Fly Larvae, Intensefficacy, Larvicide, Zoophilous Flies

Tsega KT, Maina JK and Tesema NB. (2019). The role of gut microflora caused by the incidence of disease, hygiene conditions, diet, management practices, and environmental stress affects the survival and productivity of chicken. The goal of the present article was to review the poultry gastrointestinal microflora and probiotics role in the gut from pathogen colonization and help to tolerate environmental stress. The maintenance of the gut microbial composition is possible through the regulation of the host and gut microbiota can affect the balance of mutualism and pathogenicity. The imbalanced gastrointestinal microbiota includes commensal, mutualistic and pathogenic microbes. The relationship between the microbiota and host health is complex and the effectiveness of probiotics as feed additives is considered to enhance chicken productivity and to protect the health and growth of poultry. In addition, this article focused on probiotic microorganisms and their potential characteristics.

ABSTRACT:

Key words: Probiotics, Poultry Gut Microflora

DOI: [Full text](https://dx.doi.org/10.36380/jwpr.2019.27)

The Effect of Bacillus subtilis Inoculum Doses and Fermentation Time on Enzyme Activity of Fermented Palm Kernel Cake (FPKC)

Mirnawati, Ciptaan G and Ferawati. (2018). The Effect of Bacillus subtilis Inoculum Doses and Fermentation Time on Enzyme Activity of Fermented Palm Kernel Cake (FPKC) at the ventilation rate every four minutes. In order to increase PKC utilization in poultry ration, fermentation process was done to remodel β mannan by using CRD Bacillus subtilis. This research was conducted on the effect of inoculum doses of 3%, 5%, and 7% and fermentation times which contained: (1) 2 days, (2) 4 days, and (3) 6 days. Parameters used were enzyme activity of mannanase, protease, and cellulase in FPKC with Bacillus subtilis of 7% inoculum dose and 6-day fermentation time. There was also a significant interaction on each of the inoculums dose of 7% inoculums doses and 6 days fermentation time indicate the best result as seen from 24.27 U/ml of mannanase activity, 10.27 U/ml of protease activity, 17.13 U/ml of cellulose activity.

ABSTRACT:

Bacillus subtilis: 3%, 5%, and 7%. Factor B was fermentation times which contained: (1) 2 days, (2) 4 days, and (3) 6 days. Parameters used were enzyme activity of mannanase, protease, and cellulase in FPKC. Significant interaction was seen between inoculum doses of FPKC. Activity of Fermented Palm Kernel Cake.

DOI: [Full text](https://dx.doi.org/10.36380/jwpr.2019.26)

Effect of Using Solar Energy and Different Ventilation Rate on Production in Poultry Houses.

ABSTRACT:

Energy balance, Poultry production, Solar heating system, Ventilation

The level of ammonia was also reduced with the ventilation rate every two minutes. Concentrations of ammonia ranged from 22 ppm at ventilation rate every two minutes to 28 ppm every four minutes. In addition, solar energy provided good levels of productivity reached 2.3 kg when using a solar heating system with a ventilation rate every two minutes. Productivity decreased in poultry houses with a conventional heating system and was 2 kg in ventilation rate every 2 minutes, and 1.8 kg in the ventilation rate every four minutes. Productivity decreased in poultry houses with a conventional heating system and was.
Experimental study of feeding laying hens with the feed containing the Mospilan and Actara insecticides

- Neonicotinoids
- Mospilan (Acetamiprid) 32.5-65 mg/kg of body weight
- Actara (Thiamethoxam) 180-360 mg/kg of body weight

Chronic poisoning

78-99%

Reduced egg productivity

30 days

Change the biochemical processes in meat and increase its toxicity